
SimEvents®

Reference

R2022b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

SimEvents® Reference
© COPYRIGHT 2005–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
March 2007 Online only Revised for Version 2.0 (Release 2007a). Previously

part of SimEvents® User's Guide.
September 2007 Online only Revised for Version 2.1 (Release 2007b)
March 2008 Online only Revised for Version 2.2 (Release 2008a)
October 2008 Online only Revised for Version 2.3 (Release 2008b)
March 2009 Online only Revised for Version 2.4 (Release 2009a)
September 2009 Online only Revised for Version 3.0 (Release 2009b)
March 2010 Online only Revised for Version 3.1 (Release 2010a)
September 2010 Online only Revised for Version 3.1.1 (Release 2010b)
April 2011 Online only Revised for Version 3.1.2 (Release 2011a)
September 2011 Online only Revised for Version 4.0 (Release 2011b)
March 2012 Online only Revised for Version 4.1 (Release 2012a)
September 2012 Online only Revised for Version 4.2 (Release 2012b)
March 2013 Online only Revised for Version 4.3 (Release 2013a)
September 2013 Online only Revised for Version 4.3.1 (Release 2013b)
March 2014 Online only Revised for Version 4.3.2 (Release 2014a)
October 2014 Online only Revised for Version 4.3.3 (Release 2014b)
March 2015 Online only Revised for Version 4.4 (Release 2015a)
September 2015 Online only Revised for Version 4.4.1 (Release 2015b)
March 2016 Online only Revised for Version 5.0 (Release 2016a)
September 2016 Online only Revised for Version 5.1 (Release 2016b)
March 2017 Online only Revised for Version 5.2 (Release 2017a)
September 2017 Online only Revised for Version 5.3 (Release 2017b)
March 2018 Online only Revised for Version 5.4 (Release 2018a)
September 2018 Online only Revised for Version 5.5 (Release 2018b)
March 2019 Online only Revised for Version 5.6 (Release 2019a)
September 2019 Online only Revised for Version 5.7 (Release 2019b)
March 2020 Online only Revised for Version 5.8 (Release 2020a)
September 2020 Online only Revised for Version 5.9 (Release 2020b)
March 2021 Online only Revised for Version 5.10 (Release 2021a)
September 2021 Online only Revised for Version 5.11 (Release 2021b)
March 2022 Online only Revised for Version 5.12 (Release 2022a)
September 2022 Online only Revised for Version 5.13 (Release 2022b)

Functions
1

Blocks
2

Configuration Parameters
3

SimEvents Pane . 3-2
SimEvents Pane Overview . 3-2
Execution order . 3-2
Seed for event randomization . 3-3
Maximum events per block . 3-4
Maximum events per model . 3-4
Prevent duplicate events on multiport blocks and branched signals 3-5

SimEvents Diagnostics Pane . 3-6
Diagnostics Pane Overview . 3-6
Attribute output delayed relative to entities . 3-7
Response to function call delayed relative to entities 3-8
Statistical output delayed relative to entities . 3-9
Modification of attribute values used for decision making 3-10
Identical seeds for random number generators . 3-11

Upgrade Advisor Checks
4

SimEvents Upgrade Advisor Checks . 4-2
Checks Overview . 4-2
Check for implicit event duplication caused by SimEvents blocks 4-2

v

Contents

Functions

1

matlab.DiscreteEventSystem class
Package: matlab
Superclasses: matlab.System

Base class for discrete-event system objects

Description
matlab.DiscreteEventSystem is the base class for discrete-event System objects. In your class
definition file, you must subclass your object from this base class (or from another class that derives
from this base class). Subclassing allows you to use the implementation and service methods
provided by this base class to build your object. For more information about implementing
matlab.DiscreteEventSystem class with MATLAB Discrete-Event System block, see “Create
Custom Blocks Using MATLAB Discrete-Event System Block”.

Type this syntax as the first line of your class definition file to directly inherit from the
matlab.DiscreteEventSystem base class, where ObjectName is the name of your object:

classdef ObjectName < matlab.DiscreteEventSystem

For more information about implementing a discrete-event System object™, see “Create a Discrete-
Event System Object”. For information about linking the discrete-event System object to a SimEvents
model and creating a custom behavior, see “Delay Entities with a Custom Entity Storage Block”.

The matlab.DiscreteEventSystem class is a handle class.

Class Attributes

Abstract false
HandleCompatible true
StrictDefaults false

For information on class attributes, see “Class Attributes”.

Methods
Public Methods
entityType Define entity type
blocked Event action when entity forward fails
destroy Event action upon entity destruction
entry Event action when entity enters storage element
exit Event action before entity exit from storage
generate Event action upon entity creation
iterate Event action when entity iterates
modified Event action upon entity modification by the Entity Find block
resourceAcquired Event action upon successful resource acquisition
resourceReleased Event action upon successful resource release
testEntry Event action to accept or refuse entity
timer Event action when timer completes
setupEvents Initialize entity generation events

1 Functions

1-2

queueFIFO Define first-in first-out (FIFO) queue storage
queueLIFO Define last-in last-out (LIFO) stack storage
queuePriority Define priority queue storage
queueSysPriority Define system priority queue storage
resourceSpecification Create specifications for a resource acquisition or a resource release

event
resourceType Specify an entity type and the name of the resources to be acquired by

the specified entity
initResourceArray Initialize a resource specification array
eventAcquireResource Create a resource acquisition event
eventDestroy Create entity destroy event
eventForward Create entity forward event
eventGenerate Create entity generate event
eventIterate Create entity iterate event
eventReleaseResource Create an event to release previously acquired resources
eventReleaseAllResources Create an event to release all resources acquired by an entity
eventTestEntry Create an event to indicate that the acceptance policy for the storage

has changed and the storage retests arriving entities
eventTimer Create entity timer event
cancelAcquireResource Cancel previously scheduled resource acquisition event
cancelDestroy Cancel previously scheduled entity destroy event
cancelForward Cancel previously scheduled forward events
cancelGenerate Cancel previously scheduled entity generation event
cancelIterate Cancel previously scheduled iterate event
cancelTimer Cancel previously scheduled timer event

Protected Methods
initEventArray Initialize event array
getEntityPortsImpl Define input ports and output ports of discrete-event system
getEntityStorageImpl Define entity storage elements of discrete-event system
getEntityTypesImpl Define entity types of discrete-event system
getResourceNamesImpl Define resource pools from which to acquire resources

Examples

Create a Custom Entity Storage Block to Delay Entities

This example shows how to use discrete-event System object methods to create a custom entity
storage block that has one input port, one output port, and one storage element. The discrete-event
System object is the instantiation of the matlab.DiscreteEventSystem class, which allows you to
use the implementation and service methods provided by this class. Then, you use the MATLAB
Discrete-Event System block to integrate the System object into a SimEvents model. The custom
MATLAB Discrete-Event System block accepts an entity from its input port and forwards it to its
output port with a specified delay. For more information, see “Delay Entities with a Custom Entity
Storage Block”.
classdef CustomEntityStorageBlock < matlab.DiscreteEventSystem

 % A custom entity storage block with one input, one output, and one storage.

 % Nontunable properties
 properties (Nontunable)
 % Capacity
 Capacity = 1;

 matlab.DiscreteEventSystem class

1-3

 % Delay
 Delay=4;
 end

 methods (Access=protected)
 function num = getNumInputsImpl(~)
 num = 1;
 end

 function num = getNumOutputsImpl(~)
 num = 1;
 end

 function entityTypes = getEntityTypesImpl(obj)
 entityTypes = obj.entityType('Car');
 end

 function [inputTypes,outputTypes] = getEntityPortsImpl(obj)
 inputTypes = {'Car'};
 outputTypes = {'Car'};
 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = obj.queueFIFO('Car', obj.Capacity);
 I = 1;
 O = 1;
 end

 end

 methods

 function [entity,event] = CarEntry(obj,storage,entity,source)
 % Specify event actions when entity enters storage.

 event = obj.eventForward('output', 1, obj.Delay);

 end

 end

end

Version History
Introduced in R2016a

See Also
matlab.System | entityType | entry | eventForward | eventGenerate |
getEntityStorageImpl | queueFIFO

Topics
“Create Custom Blocks Using MATLAB Discrete-Event System Block”
“Create a Custom Entity Storage Block with Iteration Event”
“Create a Discrete-Event System Object”
“Custom Entity Storage Block with Multiple Timer Events”
Class Attributes
Property Attributes

1 Functions

1-4

blocked
Class: matlab.DiscreteEventSystem
Package: matlab

Event action when entity forward fails

Syntax
[entity,events]=blocked(obj,storage,entity,destination)
[entity,events,out1,...]=blocked(obj,storage,entity,destination,in1,...)

Description
[entity,events]=blocked(obj,storage,entity,destination) specifies event actions of the
object when an entity forward fails because the destination storage element has reached its maximum
capacity.

[entity,events,out1,...]=blocked(obj,storage,entity,destination,in1,...)
specifies such event actions of the object when the block has one or more input signal ports and/or
signal output ports.

Input Arguments
obj — Discrete-event System object
MATLAB® object

Discrete-event System object.

storage — Storage
double

Index of the storage element.

entity — Entity
MATLAB structure

Entity leaving storage element. Entity has these fields:

• sys (MATLAB structure) — It has these fields:

• id (double) — Entity ID
• priority (double) — Entity priority

• data — Entity data

destination — Destination
MATLAB structure

Destination of entity, such as an output port or a storage element. It has these fields:

 blocked

1-5

• type (character vector) — Specify output or storage
• index (double) — Output or storage index

in1 — Signal inputs
any value

Any data inputs of the object. These input arguments exist only when the object has data inputs.

Output Arguments
entity — Entity
MATLAB structure

Entity leaving storage, possibly with changed data.

events — Events
vector of MATLAB structures

Events to be scheduled after the method returns. Use matlab.DiscreteEventSystem class
methods to create events. Each event has these fields:

• type (character vector) — Type of the event
• delay (double) — Delay before the event
• priority (double) — Priority of the event
• Storage (double) — Index of the storage element
• tag (character vector) — Event tag
• location (MATLAB structure) — Source or destination location of entity

out1 — Signal output
any value

Data outputs of the object. You must specify these output arguments when the object has data
outputs.

Examples

Cancel Current Forward Event

Cancel the current forward event upon blocking. Schedule an event to forward the entity to the next
location. Destroy the entity if no storage can accept the entity.

function [entity,events] = blocked(obj,storage,entity,dst)
 % Cancel the current forward event. Schedule an event to
 % forward the entity to the next location. Destroy the entity
 % if no storage can accept the entity.
 if dst.index < obj.numStorage
 events = [...
 obj.cancelForward(dst.type, dst.index), ...
 obj.eventForward('storage', dst.index+1, 0)];
 else
 events = [...

1 Functions

1-6

 obj.cancelForward(dst.type, dst.index), ...
 obj.eventDestroy()];
 end
end

Version History
Introduced in R2016a

See Also
matlab.DiscreteEventSystem | destroy | entry | exit | generate | getEntityPortsImpl |
getEntityStorageImpl | getEntityTypesImpl | iterate | setupEvents | timer

Topics
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

 blocked

1-7

cancelAcquireResource
Class: matlab.DiscreteEventSystem
Package: matlab

Cancel previously scheduled resource acquisition event

Syntax
event = cancelAcquireResource(tag)

Description
event = cancelAcquireResource(tag) cancels a previously scheduled resource acquisition
event.

Input Arguments
tag — Tag of the previously scheduled resource acquisition event
character vector

Tag of the previously scheduled resource acquisition event to be canceled.

Output Arguments
event — Cancellation Event
MATLAB structure

Event for canceling the previously scheduled resource acquisition.

Examples

Cancel a Resource Acquisition Event

Cancel a resource acquisition event when the previously scheduled resource acquisition event times
out.

function [entity,events] = timer(obj,storage,entity,tag)
 % Assume that eventTimer() defines a timer with tag and that there is a previously
 % scheduled resource acquisition event with 'loadingWorker' tag.
 event = obj.cancelAcquireResource('loadingWorker');
 % This cancels the 'loadingWorker' acquisition event when the timer finishes.
end

Version History
Introduced in R2019a

1 Functions

1-8

See Also
matlab.DiscreteEventSystem | eventForward | getResourceNamesImpl |
resourceReleased | eventReleaseResource

Topics
“Create the Discrete-Event System Object with Multiple Timer Events”
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

 cancelAcquireResource

1-9

cancelDestroy
Class: matlab.DiscreteEventSystem
Package: matlab

Cancel previously scheduled entity destroy event

Syntax
event=cancelDestroy()

Description
event=cancelDestroy() cancels a previously scheduled destroy event of the current entity. You
can then schedule this event by returning it as the output argument when implementing an event
action method, such as entry or exit.

Output Arguments
event — Event
MATLAB structure

Event for cancelling entity destroy.

Examples

Cancel Previously Scheduled Destroy Event

Cancel the previously scheduled destroy event of the entity in the current event action context.

function [entity,events] = timer(obj,storage,entity,tag)
 % Cancel the previously scheduled destroy event of the entity in
 % current event action context.
 event = obj.cancelDestroy();
end

Version History
Introduced in R2016a

See Also
cancelGenerate | cancelForward | cancelIterate | cancelTimer | eventDestroy |
eventForward | eventGenerate | eventIterate | eventTimer

Topics
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-10

cancelForward
Class: matlab.DiscreteEventSystem
Package: matlab

Cancel previously scheduled forward events

Syntax
event=cancelForward(destinationType,destinationID)

Description
event=cancelForward(destinationType,destinationID) cancel previously scheduled
forward events on the current entity. You can then schedule this event by returning it as the output
argument when implementing an event action method, such as entry or exit.

Input Arguments
destinationType — Destination type
character vector

Destination type. Its value can be either:

• storage, if destination of the forward event is a storage element.
• output, if destination of forward event is an output port.

destinationID — Destination index
double

Destination index, specified as a double. Its value can be either:

• Storage index, when destinationType is storage.
• Output port index, when destinationType is output.

Output Arguments
event — Event
MATLAB structure

Event for cancelling an entity forward.

Examples

Cancel Previously Schedule Forward Event

Cancel a previously scheduled forward event of the entity in the current event action context.

 cancelForward

1-11

function [entity,events] = timer(obj,storage,entity,tag)
 % Cancel a previously scheduled forward event of the entity in
 % current event action context. The entity was scheduled to go to
 % storage element 2.
 event1 = obj.cancelForward('storage', 2);

 % Cancel a previously scheduled forward event of the entity in
 % current event action context. The entity was scheduled to go to
 % output port 1.
 event2 = obj.cancelForward('output', 1);
end

Version History
Introduced in R2016a

See Also
cancelDestroy | cancelGenerate | cancelIterate | cancelTimer | eventDestroy |
eventForward | eventGenerate | eventIterate | eventTimer

Topics
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-12

cancelGenerate
Class: matlab.DiscreteEventSystem
Package: matlab

Cancel previously scheduled entity generation event

Syntax
event=cancelGenerate(storageID,tag)

Description
event=cancelGenerate(storageID,tag) cancels a previously scheduled generation event. You
can then schedule this event by returning it as the output argument when implementing an event
action method, such as entry or exit.

Input Arguments
storageID — Storage index
double

Storage index of the to-be-cancelled entity generation event.

tag — Tag
character vector

Tag of the to-be-cancelled entity generation event.

Output Arguments
event — Event
MATLAB structure

Event for cancelling an entity generation.

Examples

Cancel Previously Scheduled Entity Generation Event

Cancel a previously scheduled entity generation event.

function [entity,event] = entry(obj,storage,entity,src)
 % Cancel a previously scheduled entity generation event. The event
 % was scheduled for storage element 3, with a custom tag 'seed'.

 cancelGenerate

1-13

 event = obj.cancelGenerate(3, 'seed');
end

Version History
Introduced in R2016a

See Also
cancelDestroy | cancelIterate | cancelTimer | eventDestroy | eventForward |
eventGenerate

Topics
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-14

cancelIterate
Class: matlab.DiscreteEventSystem
Package: matlab

Cancel previously scheduled iterate event

Syntax
event=cancelIterate(storageID,tag)

Description
event=cancelIterate(storageID,tag) cancels a previously scheduled iterate event. You can
commit the cancellation by returning it as the output argument when implementing an event action
method, such as entry.

Input Arguments
storageID — Storage index
double

Storage index of the to-be-cancelled iterate event.

tag — Tag
character vector

Tag of the to-be-cancelled iterate event.

Output Arguments
event — Event
MATLAB structure

Event for cancelling the specified iterate event.

Examples

Cancel Previously Scheduled Iterate Event

Cancel a previously scheduled iterate event.

function [entity,event] = entry(obj,storage,entity,src)
 % Cancel a previously scheduled iterate event. The event was
 % scheduled for storage element 2, with a custom tag 'search'.

 cancelIterate

1-15

 event = obj.cancelIterate(2, 'search');
end

Version History
Introduced in R2016a

See Also
cancelDestroy | cancelGenerate | cancelForward | cancelTimer | eventDestroy |
eventForward | eventGenerate | eventIterate | eventTimer

Topics
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-16

cancelTimer
Class: matlab.DiscreteEventSystem
Package: matlab

Cancel previously scheduled timer event

Syntax
event=cancelTimer(tag)

Description
event=cancelTimer(tag) cancels a previously scheduled timer event of the current entity. You can
commit the cancellation by returning it as the output argument when implementing an event action
method, such as entry.

Input Arguments
tag — Tag
character vector

Tag of the to-be-cancelled timer event.

Output Arguments
event — Event
MATLAB structure

Event for cancelling the specified timer.

Examples

Cancel Previously Scheduled Timer Event

Cancel a previously scheduled timer event of the entity in the current event action context.

function [entity,event] = entry(obj,storage,entity,src)
 % Cancel a previously scheduled timer event of the entity in
 % current event action context. The event was scheduled with a
 % custom tag 'timeout'.
 event = obj.cancelTimer('timeout');
end

Version History
Introduced in R2016a

 cancelTimer

1-17

See Also
cancelDestroy | cancelGenerate | cancelForward | cancelIterate | eventDestroy |
eventForward | eventGenerate | eventIterate | eventTimer

Topics
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-18

destroy
Class: matlab.DiscreteEventSystem
Package: matlab

Event action upon entity destruction

Syntax
[events]=destroy(obj,storage,entity)
[events,out1,...]=destroy(obj,storage,entity,in1,...)

Description
[events]=destroy(obj,storage,entity) specifies event actions of the object before an entity
is destroyed.

[events,out1,...]=destroy(obj,storage,entity,in1,...) specifies such event actions of
the object when the block has one or more input signal ports and/or signal output ports.

Input Arguments
obj — Discrete-event System object
MATLAB object

Discrete-event System object.

storage — Storage
double

Index of the storage element.

entity — Entity
MATLAB structure

Entity leaving storage element. Entity has these fields:

• sys (MATLAB structure) — It has these fields:

• id (double) — Entity ID
• priority (double) — Entity priority

• data — Entity data

in1 — Signal input
any value

Any data inputs of the object. These input arguments exist only when the object has data inputs.

 destroy

1-19

Output Arguments
events — Events
vector of MATLAB structures

Events to be scheduled. Use matlab.DiscreteEventSystem class methods to create events. Each
event has these fields:

• type (character vector) — Type of the event
• delay (double) — Delay before the event
• priority (double) — Priority of the event
• Storage (double) — Index of the storage element
• tag (character vector) — Event tag
• location (MATLAB structure) — Source or destination location of entity

out1 — Signal output
any value

Data outputs of the object. You must specify these output arguments when the object has data
outputs.

Examples

Event Action Upon Entity Destruction

Specify event action upon entity destruction in storage.

function events = destroy(obj,storage,entity)
 % Upon destroy of an entity, display its ID and schedule to
 % generate a new entity.
 disp(['Entity of ID ' num2str(entity.sys.id) ' is destroyed']);
 events = obj.eventGenerate(storage, 'Refill', 1, entity.sys.priority);
end

Version History
Introduced in R2016a

See Also
matlab.DiscreteEventSystem | blocked | entry | exit | generate | getEntityPortsImpl |
getEntityStorageImpl | getEntityTypesImpl | iterate | setupEvents | timer

Topics
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-20

entityType
Class: matlab.DiscreteEventSystem
Package: matlab

Define entity type

Syntax
entitytype=entityType(name)
entitytype=entityType(name,datatype)
entitytype=entityType(name,datatype,dimensions)
entitytype=entityType(name,datatype,dimensions,complexity)

Description
entitytype=entityType(name) defines a named entity type.

entitytype=entityType(name,datatype) defines a named entity type that takes real values and
with specified data type of size 1.

entitytype=entityType(name,datatype,dimensions) defines a named entity type that takes
real values and with specified data type and size.

entitytype=entityType(name,datatype,dimensions,complexity) defines a named entity
type with a specified data type, dimensions, and complexity.

Input Arguments
name — Entity type name
character vector

Entity type name.

datatype — Data type (optional)
character vector

Data type that specifies the data type of the entity. The data type must be a built-in data type or a bus
object.

dimensions — Dimensions (optional)
vector of doubles

Dimensions, specified as a vector of doubles, specifying the dimensions of the entity.

complexity — Complexity (optional)
logical | double

Complexity, specified as a logical or double value, specifying the complexity of the entity:

• false or 0 — If the entity contains real values.

 entityType

1-21

• true or any positive number — If the entity contains complex values.

Output Arguments
entitytype — Entity type
MATLAB structure

Entity type, specified as a MATLAB structure.

Examples

Define Entity Type

Define entity types type1, type2, and type3.

function entityTypes = getEntityTypesImpl(obj)
 % Define entity type 'type1' with inherited data type, dimension
 % and complexity
 t1 = obj.entityType('type1');

 % Define entity type 'type2' with specified data type ('mybus'),
 % default dimension and complexity (i.e. scalar real values)
 t2 = obj.entityType('type2', 'mybus');

 % Define entity type 'type3' with specified data type ('double'),
 % dimension (2 by 3 matrix), and complexity (complex)
 t3 = obj.entityType('type3', 'double', [2 3], true);

 entityTypes = [t1, t2, t3];
end

Version History
Introduced in R2016a

See Also
matlab.DiscreteEventSystem | getEntityTypesImpl

Topics
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-22

entry
Class: matlab.DiscreteEventSystem
Package: matlab

Event action when entity enters storage element

Syntax
[entity,events]=entry(obj,storage,entity,source)
[entity,events,out1,...]=entry(obj,storage,entity,source,in1,...)

Description
[entity,events]=entry(obj,storage,entity,source) specifies event actions of the object
when an entity enters storage.

[entity,events,out1,...]=entry(obj,storage,entity,source,in1,...) such event
actions of the object when the block has one or more input signal ports and/or signal output ports.

Input Arguments
obj — Discrete-event System object
MATLAB object

Discrete-event System object.

storage — Storage
double

Index of the storage element.

entity — Entity
MATLAB structure

Entity entering storage component. Entity has these fields:

• sys (MATLAB structure) — It has these fields:

• id (double) — Entity ID
• priority (double) — Entity priority

• data — Entity data

source — Source location
MATLAB structure

Source location of entity, such as an input port or a storage element. It has these fields:

• type (character vector) — Specify input or storage
• index (double) — Input or storage index

 entry

1-23

in1 — Signal input
any value

Any data inputs of the object. These input arguments exist only when the object has data inputs.

Output Arguments
entity — Entity
MATLAB structure

Entity entering storage, possibly with changed data. See “entity” on page 1-0 .

events — Events
vector of MATLAB structures

Events to be scheduled. Use matlab.DiscreteEventSystem class methods to create events. Each
event has these fields:

• type (character vector) — Type of the event
• delay (double) — Delay before the event
• priority (double) — Priority of the event
• Storage (double) — Index of the storage element
• tag (character vector) — Event tag
• location (MATLAB structure) — Source or destination location of entity, see “source” on page

1-0

out1 — Signal output
any value

Data outputs of the object. You must specify these output arguments when the object has data
outputs.

Examples
Event Action Upon Entity Entry

Event action for entity entry to storage.
function [entity,events] = entry(obj,storage,entity,src)
 % Specify event actions when entity entered storage.
 disp(['Entity of ID ' num2str(entity.sys.id) ...
 ' has entered storage element ' num2str(storage)]);
 switch src.type
 case 'input'
 disp(['Entity came from input port ' num2str(src.index)]);
 case 'storage'
 disp(['Entity came from storage element ' num2str(src.index)]);
 end
 events = [...
 obj.eventDestroy(), ... % Destroy the newly entered entity
 obj.eventIterate(2, '')]; % Iterate entities in storage element 2
end

Create a Custom Entity Storage Block to Delay Entities

This example shows how to use discrete-event System object methods to create a custom entity
storage block that has one input port, one output port, and one storage element. The discrete-event

1 Functions

1-24

System object is the instantiation of the matlab.DiscreteEventSystem class, which allows you to
use the implementation and service methods provided by this class. Then, you use the MATLAB
Discrete-Event System block to integrate the System object into a SimEvents model.

The custom MATLAB Discrete-Event System block accepts an entity from its input port and forwards
it to its output port with a specified delay. For more information, see “Delay Entities with a Custom
Entity Storage Block”.
classdef CustomEntityStorageBlock < matlab.DiscreteEventSystem

 % A custom entity storage block with one input, one output, and one storage.

 % Nontunable properties
 properties (Nontunable)
 % Capacity
 Capacity = 1;
 % Delay
 Delay=4;
 end

 methods (Access=protected)
 function num = getNumInputsImpl(~)
 num = 1;
 end

 function num = getNumOutputsImpl(~)
 num = 1;
 end

 function entityTypes = getEntityTypesImpl(obj)
 entityTypes = obj.entityType('Car');
 end

 function [inputTypes,outputTypes] = getEntityPortsImpl(obj)
 inputTypes = {'Car'};
 outputTypes = {'Car'};
 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = obj.queueFIFO('Car', obj.Capacity);
 I = 1;
 O = 1;
 end

 end

 methods

 function [entity,event] = CarEntry(obj,storage,entity,source)
 % Specify event actions when entity enters storage.

 event = obj.eventForward('output', 1, obj.Delay);

 end

 end

end

Version History
Introduced in R2016a

See Also
matlab.DiscreteEventSystem | blocked | destroy | exit | generate | getEntityPortsImpl
| getEntityStorageImpl | getEntityTypesImpl | iterate | setupEvents | timer

Topics
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

 entry

1-25

eventAcquireResource
Class: matlab.DiscreteEventSystem
Package: matlab

Create a resource acquisition event

Syntax
event = eventAcquireResource(resourceSpec,tag)

Description
event = eventAcquireResource(resourceSpec,tag) creates an event to acquire resources
from existing Resource Pool blocks. You can specify names and amount of resources to acquire. For
more details, see resourceSpecification.

If all the requested resources are not available during the event execution, the acquisition event
remains active. When the requested resources become available, the event is rescheduled for
immediate execution.

Input Arguments
resourceSpec — Specify name and amount of resources for acquisition
array of MATLAB structures

Specify the name and the amount of resources to be acquired by the entities.

tag — Identifier tag for the resource acquisition event
character vector

Custom tag of this entity resource acquisition event. You can use the tag to identify an event when
multiple events act on the same entity. For more information about managing multiple events, see
“Custom Entity Storage Block with Multiple Timer Events”.

Output Arguments
event — Resource acquisition event
MATLAB structure

Event that acquires resources for the entity.

Examples
Acquire Resources upon Entry

On entity entry to a storage element, an entity acquires one resource of type Test1. The tag of this
resource acquisition event is TestTag.

function [entity,events] = entry(obj, storage, entity, source)
% On entity entry, acquire a resource from the specified pool.

1 Functions

1-26

resourceSpec = obj.resourceSpecification('Test1', 1);
event = obj.eventAcquireResource(resourceSpec, 'TestTag');
end

Custom Block to Acquire Resources

This example shows how to use resource management methods to create a custom entity storage
block in which entities acquire resources from specified Resource Pool blocks.

Suppose that you manage a facility that produces parts from two different materials, material 1 and
material 2, to fulfill orders. After a part is produced, it is evaluated for quality assurance.

Two testing methods for quality control are:

• Test 1 is used for parts that are produced from material 1.
• Test 2 is used for parts that are produced from material 2

After the production phase, parts are tagged based on their material to apply the correct test.

For more information, see “Create a Custom Resource Acquirer Block”.
classdef CustomBlockAcquireResources < matlab.DiscreteEventSystem
 % Custom resource acquire block example.

 methods(Access = protected)

 function num = getNumInputsImpl(obj)
 num = 1;
 end

 function num = getNumOutputsImpl(obj)
 num = 1;
 end

 function entityTypes = getEntityTypesImpl(obj)
 entityTypes(1) = obj.entityType('Part');
 end

 function [input, output] = getEntityPortsImpl(obj)
 input = {'Part'};
 output = {'Part'};
 end

 function [storageSpec, I, O] = getEntityStorageImpl(obj)
 storageSpec(1) = obj.queueFIFO('Part', 1);
 I = 1;
 O = 1;
 end

 function resNames = getResourceNamesImpl(obj)
 % Define the names of the resources to be acquired.
 resNames = obj.resourceType('Part', {'Test1', 'Test2'}) ;
 end

 end

 methods

 function [entity,events] = entry(obj, storage, entity, source)
 % On entity entry, acquire a resource from the specified pool.
 if entity.data.Test == 1
 % If the entity is produced from Material1, request Test1.
 resReq = obj.resourceSpecification('Test1', 1);
 else
 % If the entity is produced from Material2, request Test2.
 resReq = obj.resourceSpecification('Test2', 1);
 end
 % Acquire the resource from the corresponding pool.
 events = obj.eventAcquireResource(resReq, 'TestTag');
 end

 eventAcquireResource

1-27

 function [entity,events] = resourceAcquired(obj, storage,...
 entity, resources, tag)
 % After the resource acquisition, forward the entity to the output.
 events = obj.eventForward('output', storage, 0.0);
 end

 end

end

Version History
Introduced in R2019a

See Also
matlab.DiscreteEventSystem | eventForward | eventReleaseResource |
cancelAcquireResource | getResourceNamesImpl | resourceReleased |
resourceSpecification

Topics
“Create a Custom Resource Acquirer Block”
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-28

eventDestroy
Class: matlab.DiscreteEventSystem
Package: matlab

Create entity destroy event

Syntax
event=eventDestroy()

Description
event=eventDestroy() creates an event to destroy an entity. You can then schedule this event by
returning it as an output argument when implementing an event action method, such as timer.

Output Arguments
event — Event
MATLAB structure

Event that destroys the entity in current event action context.

Examples

Destroy Entity in Current Event Action Context

Define an event to destroy the entity in current event action context.

function [entity,event] = entry(obj,storage,entity,src)
 % Define an event to destroy the entity in current event action
 % context.
 event = obj.eventDestroy();
end

Version History
Introduced in R2016a

See Also
cancelDestroy | cancelGenerate | cancelForward | cancelIterate | cancelTimer |
eventForward | eventGenerate | eventIterate | eventTimer

Topics
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

 eventDestroy

1-29

eventForward
Class: matlab.DiscreteEventSystem
Package: matlab

Create entity forward event

Syntax
event=eventForward(locationType,locationIndex,delay)

Description
event=eventForward(locationType,locationIndex,delay) creates an event to forward an
entity from the current location to a new location. You can then schedule this event by returning it as
the output argument when implementing an event action method, such as entry.

Input Arguments
locationType — Location type
character vector

Type of the new location. Specify 'storage' if the new location is a storage element of the discrete-
event system. Specify 'output' if you want the entity to exit from an output port of the discrete-
event system.

locationIndex — Location index
double

Index of the new location. If location type is 'storage', it indicates the index of a storage element.
If location type is 'output', it indicates the index of an output port.

delay — Delay
double

Time delay between current simulation time and the time the entity will be forwarded.

Output Arguments
event — Event
MATLAB structure

Event that forwards the entity in current event action context to a new location.

Examples
Forward Current Entity to Storage

Define an event that forwards the current entity to storage.

1 Functions

1-30

function [entity,events] = entry(obj,storage,entity,src)

 % Define an event that forwards the current entity to storage
 % element 2. Event shall be scheduled to execute 0.8 second later.
 event1 = obj.eventForward('storage', 2, 0.8);

 % Define an event that forwards the current entity to output port 1.
 % Event shall be scheduled to execute at current simulation clock time.
 event2 = obj.eventForward('output', 1, 0);

 % Define events as event1 and event2
 events = [event1, event2];
end

Create a Custom Entity Storage Block to Delay Entities

This example shows how to use discrete-event System object methods to create a custom entity
storage block that has one input port, one output port, and one storage element. The discrete-event
System object is the instantiation of the matlab.DiscreteEventSystem class, which allows you to
use the implementation and service methods provided by this class. Then, you use the MATLAB
Discrete-Event System block to integrate the System object into a SimEvents model.

The custom MATLAB Discrete-Event System block accepts an entity from its input port and forwards
it to its output port with a specified delay. For more information, see “Delay Entities with a Custom
Entity Storage Block”.
classdef CustomEntityStorageBlock < matlab.DiscreteEventSystem

 % A custom entity storage block with one input, one output, and one storage.

 % Nontunable properties
 properties (Nontunable)
 % Capacity
 Capacity = 1;
 % Delay
 Delay=4;
 end

 methods (Access=protected)
 function num = getNumInputsImpl(~)
 num = 1;
 end

 function num = getNumOutputsImpl(~)
 num = 1;
 end

 function entityTypes = getEntityTypesImpl(obj)
 entityTypes = obj.entityType('Car');
 end

 function [inputTypes,outputTypes] = getEntityPortsImpl(obj)
 inputTypes = {'Car'};
 outputTypes = {'Car'};
 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = obj.queueFIFO('Car', obj.Capacity);
 I = 1;
 O = 1;
 end

 end

 methods

 function [entity,event] = CarEntry(obj,storage,entity,source)
 % Specify event actions when entity enters storage.

 event = obj.eventForward('output', 1, obj.Delay);

 end

 end

 eventForward

1-31

end

Version History
Introduced in R2016a

See Also
cancelForward | eventDestroy | eventGenerate | eventIterate | eventTimer

Topics
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-32

eventGenerate
Class: matlab.DiscreteEventSystem
Package: matlab

Create entity generate event

Syntax
event=eventGenerate(storageID,tag,delay,priority)

Description
event=eventGenerate(storageID,tag,delay,priority) creates an event to generate an
entity. You can then schedule this event by returning it as the output argument when implementing an
event action method, such as entry.

Input Arguments
storageID — Storage index
double

Index of the storage element, where a new entity will be generated.

tag — Tag
character vector

Custom tag of this entity generate event.

delay — Delay
double

Time delay between current simulation time and the time the entity will be generated.

priority — Priority
double

Positive integer value indicating system priority of the new entity. A smaller numeric value indicates a
higher priority.

Output Arguments
event — Event
MATLAB structure

Event that generates an new entity in the specified storage element.

 eventGenerate

1-33

Examples
Define Entity Generation Event

Define entity generation event in storage element 3.

function event = setupEvents(obj)
 % Define an entity generation event
 % - A new entity shall be created in storage element 3
 % - The event has a custom tag 'seed'
 % - The event shall be executed 0.5 second later
 % - The new entity shall be initialized with a priority of 200
 event = obj.eventGenerate(3, 'seed', 0.5, 200);
end

Create a Custom Block to Generate Entities

This example shows how to create a custom source block that generates entities and to manage
discrete states when implementing the discrete-event System object methods.

For more information, see “Custom Entity Generator Block with Signal Input and Signal Output”.
classdef CustomEntityStorageBlockGeneration < matlab.DiscreteEventSystem...
 & matlab.System
 % A custom entity generator block.

 % Nontunable properties
 properties (Nontunable)
 % Generation period
 period = 1;
 end

 properties(DiscreteState)
 % Entity priority
 priority;
 % Entity value
 value;
 end

 % Discrete-event algorithms
 methods
 function [events, out1] = setupEvents(obj)
 % Set up entity generation events at simulation start.
 events = obj.eventGenerate(1,'mygen',obj.period,obj.priority);
 % Set up the initial value of the output signal.
 out1 = 10;
 end

 function [entity,events,out1] = generate(obj,storage,entity,tag,in1)
 % Specify event actions when entity is generated in storage.
 entity.data = obj.value;
 % The priority value is assigned from the input signal.
 obj.priority = in1;
 % Output signal is the assigned priority value.
 out1 = obj.priority;
 events = [obj.eventForward('output',1,0) ...
 obj.eventGenerate(1,'mygen',obj.period,obj.priority)];
 end
 end

 methods(Access = protected)

 function entityTypes = getEntityTypesImpl(obj)
 entityTypes = obj.entityType('Material');
 end

 function [inputTypes,outputTypes] = getEntityPortsImpl(obj)
 % Specify entity input and output ports. Return entity types at
 % a port as strings in a cell array. Use empty string to
 % indicate a data port.
 inputTypes = {''};
 outputTypes = {'Material',''};

1 Functions

1-34

 end

 function resetImpl(obj)
 % Initialize / reset discrete-state properties.
 obj.priority = 10;
 obj.value = 1:12;
 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = obj.queueFIFO('Material', 1);
 I = 0;
 O = [1 0];
 end

 function num = getNumInputsImpl(obj)
 % Define total number of inputs for system with optional
 % inputs.
 num = 1;
 end

 function num = getNumOutputsImpl(~)
 % Define total number of outputs.
 num = 2;
 end
 function [out1 out2] = getOutputSizeImpl(obj)
 % Return size for each output port.
 out1 = [1 12];
 out2 = 1;
 end

 function [out1 out2] = getOutputDataTypeImpl(obj)
 % Return data type for each output port.
 out1 = "double";
 out2 = "double";
 end

 function [out1 out2] = isOutputComplexImpl(obj)
 % Return true for each output port with complex data.
 out1 = false;
 out2 = false;
 end

 function [sz,dt,cp] = getDiscreteStateSpecificationImpl(obj,name)
 % Return size, data type, and complexity of discrete-state
 % specified in name.
 switch name
 case 'priority'
 sz = [1 1];
 case 'value'
 sz = [1 12];
 end
 dt = "double";
 cp = false;
 end
 end
end

Version History
Introduced in R2016a

See Also
cancelGenerate | cancelTimer | eventDestroy | eventForward | eventIterate |
eventTimer

Topics
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

 eventGenerate

1-35

eventIterate
Class: matlab.DiscreteEventSystem
Package: matlab

Create entity iterate event

Syntax
event=eventIterate(storageID,tag,priority)

Description
event=eventIterate(storageID,tag,priority) creates an event to repeatedly process
entities of a storage element. You can then schedule this event by returning it as the output argument
when implementing an event action method, such as exit.

Input Arguments
storageID — Storage index
double

Index of a storage element. Entities inside this storage element will be iterated.

tag — Tag
character vector

Custom tag of this entity iterate event.

priority — Priority (optional)
double

Priority of the entity iterate event. This value must be a positive integer, where a smaller value
indicates a higher event priority.

Output Arguments
event — Event
MATLAB structure

Event that processes entities of a specific storage element.

Examples
Iterate Entities of a Storage Element

Define an event to iterate entities of a storage element..

function event = exit(obj,storage,entity,dst)
 % Define an event to iterate entities of a storage element

1 Functions

1-36

 % - The event is regarding to storage element 2
 % - The event has a custom tag 'search'
 % - The event shall be executed at current simulation clock time
 % - The event has a priority of 10 (a smaller numeric value
 % indicates a higher event priority)
 event = obj.eventIterate(2, 'search', 10);
end

Custom Entity Storage Block with Iterate Event

In this example, a custom block allows entities to enter its storage element through its input port. The
storage element is a priority queue that sorts the entities based on their Diameter attribute in
ascending order. Every entity entry to the block's storage invokes an iteration event to display the
diameter and the position of each entity in the storage.

For more information, see “Create a Custom Entity Storage Block with Iteration Event”.
classdef CustomEntityStorageBlockIteration < matlab.DiscreteEventSystem

 % A custom entity storage block with one input port and one storage element.

 % Nontunable properties
 properties (Nontunable)
 % Capacity
 Capacity = 5;
 end
 % Create the storage element with one input and one storage.
 methods (Access=protected)

 function num = getNumInputsImpl(obj)
 num = 1;
 end

 function num = getNumOutputsImpl(obj)
 num = 0;
 end

 function entityTypes = getEntityTypesImpl(obj)
 entityType1 = obj.entityType('Wheel');
 entityTypes = entityType1;
 end

 function [inputTypes,outputTypes] = getEntityPortsImpl(obj)
 inputTypes = {'Wheel'};
 outputTypes={};

 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = obj.queuePriority('Wheel',obj.Capacity, 'Diameter','ascending');
 I = 1;
 O = [];

 end

 end
 % Entity entry event action
 methods

 function [entity, event] = WheelEntry(obj,storage,entity, source)
 % Entity entry invokes an iterate event.
 event = obj.eventIterate(1, '');
 end

 % The itarate event action
 function [entity,event,next] = WheelIterate(obj,storage,entity,tag,cur)
 % Display wheel id, position in the storage, and diameter.
 coder.extrinsic('fprintf');
 fprintf('Wheel id %d, Current position %d, Diameter %d\n', ...
 entity.sys.id, cur.position, entity.data.Diameter);
 if cur.size == cur.position
 fprintf('End of Iteration \n')
 end
 next = true;
 event=[];

 eventIterate

1-37

 end

 end

end

Version History
Introduced in R2016a

See Also
cancelIterate | cancelTimer | eventDestroy | eventForward | eventGenerate |
eventTimer

Topics
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-38

eventReleaseAllResources
Class: matlab.DiscreteEventSystem
Package: matlab

Create an event to release all resources acquired by an entity

Syntax
event = eventReleaseAllResources(tag)

Description
event = eventReleaseAllResources(tag) creates an event to release all the resources
acquired by an entity.

Input Arguments
tag — Identifier tag for the resource release event
character vector

Custom tag of this entity resource release event. You can use the tag to identify an event when
multiple events act on the same entity. For more information about managing multiple events, see
“Custom Entity Storage Block with Multiple Timer Events”.

Output Arguments
event — Resource release event
MATLAB structure

Event that releases all resources from the entity.

Examples
On entity entry to a storage element, an entity releases all of the previously acquired resources. The
tag of this resource acquisition event is ReleaseAll.

function [entity, event] = entry(obj, storage, entity, source)
 event = obj.eventReleaseAllResources('releaseAll');
end

Version History
Introduced in R2019a

See Also
matlab.DiscreteEventSystem | eventForward | getResourceNamesImpl |
resourceReleased | eventReleaseResource

 eventReleaseAllResources

1-39

Topics
“Create a Custom Resource Acquirer Block”
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-40

eventReleaseResource
Class: matlab.DiscreteEventSystem
Package: matlab

Create an event to release previously acquired resources

Syntax
event = eventReleaseResource(resourceSpec,tag)

Description
event = eventReleaseResource(resourceSpec,tag) creates an event for entities to release
previously acquired resources. You can specify the type and amount of resources to release. For more
details, see resourceSpecification.

If the amount of resources to be released is larger than the previously acquired resources, then all
the resources are released.

Input Arguments
resourceSpec — Specify name and amount of resources for release
array of MATLAB structures

Specify the name and the amount of resources to be released by the entities.

tag — Identifier tag for the resource release event
character vector

Custom tag of this entity resource release event. You can use the tag to identify an event when
multiple events act on the same entity. For more information about managing multiple events, see
“Custom Entity Storage Block with Multiple Timer Events”.

Output Arguments
event — Resource release event
MATLAB structure

Event that releases resources from the entity.

Examples

Acquire Resources on Entry

On entity entry to a storage element, an entity releases one resource of type Test1. The tag of this
resource acquisition event is myTag.

function [entity,events] = entry(obj, storage, entity, source)
% On entity entry, release a resource from the specified pool.

 eventReleaseResource

1-41

resourceSpec = obj.resourceSpecification('Test1', 1);
event = obj.eventReleaseResource(resourceSpec, 'myTag');
end

Version History
Introduced in R2019a

See Also
matlab.DiscreteEventSystem | eventForward | cancelAcquireResource |
getResourceNamesImpl | resourceAcquired | eventAcquireResource |
resourceSpecification

Topics
“Create a Custom Resource Acquirer Block”
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-42

eventTestEntry
Class: matlab.DiscreteEventSystem
Package: matlab

Create an event to indicate that the acceptance policy for the storage has changed and the storage
retests arriving entities

Syntax
event = eventTestEntry(storageId)

Description
event = eventTestEntry(storageId) creates an event to retest entities arriving at storage.

Input Arguments
storageId — Index of storage element
scalar

Index of the storage element that is to be unblocked, specified as a scalar.
Data Types: double

Output Arguments
event — Unblock
MATLAB structure

Event that unblocks a storage or input port for processing entities, specified as a MATLAB structure.

Examples

Event Action to Retest Entity Entry

Retest entity entry to storage.

function [entity,events] = exit(obj,storage,entity,dst)
 % Indicates that more entities can be accepted and acceptance policy has changed
 events = [events,obj.eventTestEntry(storage)];
end

Version History
Introduced in R2018a

See Also
matlab.DiscreteEventSystem | iterate

 eventTestEntry

1-43

Topics
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-44

eventTimer
Class: matlab.DiscreteEventSystem
Package: matlab

Create entity timer event

Syntax
event=eventTimer(tag,delay)

Description
event=eventTimer(tag,delay) creates an event to delay an entity for a period of time. You can
then schedule the timer by returning it as the output argument when implementing an event action
method, such as entry.

Input Arguments
tag — Tag
character vector

Custom tag of this entity timer event.

delay — Delay
double

Time delay between current simulation time and the time that this timer event will be executed.

Output Arguments
event — Event
MATLAB structure

Event that delays the entity in current event action context for a period of time.

Examples
Define Timer Event

Define a timer event.
function [entity,event] = entry(obj,storage,entity,src)
 % Define a timer event
 % - The event is regarding the entity in current event action context
 % - The event has a custom tag 'timeout'
 % - The event will be executed 3.0 seconds later
 event = obj.eventTimer('timeout', 3.0);
end

Custom Block with Timer Events

This example uses a custom entity storage block with one input, two outputs, and a storage element.
An entity of type Part with TimeOut attribute enters the storage of the custom block to be

 eventTimer

1-45

processed. TimeOut determines the maximum allowed processing time of the parts. When a part
enters the storage, two timer events are activated. One timer tracks the processing time of the part in
the oven. When this timer expires, the entity is forwarded to output 1. Another timer acts as a fail-
safe and tracks if the maximum allowed processing time is exceeded or not. When this timer expires,
the process is terminated and the entity is forwarded to the output 2.

For more information, see “Custom Entity Storage Block with Multiple Timer Events”.
classdef CustomEntityStorageBlockTimer < matlab.DiscreteEventSystem

 % A custom entity storage block with one input port, two output ports, and one storage.

 % Nontunable properties
 properties (Nontunable)
 % Capacity
 Capacity = 1;
 end

 methods (Access=protected)

 function num = getNumInputsImpl(~)
 num = 1;
 end

 function num = getNumOutputsImpl(~)
 num = 2;
 end

 function entityTypes = getEntityTypesImpl(obj)
 entityTypes = obj.entityType('Part');
 end

 function [inputTypes,outputTypes] = getEntityPortsImpl(obj)
 inputTypes = {'Part'};
 outputTypes = {'Part' 'Part'};
 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = obj.queueFIFO('Part', obj.Capacity);
 I = 1;
 O = [1 1];
 end

 end

 methods

 function [entity,event] = PartEntry(obj,storage,entity,source)
 % Specify event actions when entity enters storage.
 ProcessingTime=randi([1 15]);
 event1 = obj.eventTimer('TimeOut', entity.data.TimeOut);
 event2 = obj.eventTimer('ProcessComplete', ProcessingTime);
 event = [event1 event2];
 end

 function [entity, event] = timer(obj,storage,entity,tag)
 % Specify event actions for when scheduled timer completes.
 event = obj.initEventArray;
 switch tag
 case 'ProcessComplete'
 event = obj.eventForward('output', 1, 0);
 case 'TimeOut'
 event = obj.eventForward('output', 2, 0);
 end

 end

 end

end

Version History
Introduced in R2016a

1 Functions

1-46

See Also
cancelDestroy | cancelGenerate | cancelForward | cancelIterate | cancelTimer |
eventDestroy | eventForward | eventGenerate | eventIterate

Topics
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

 eventTimer

1-47

exit
Class: matlab.DiscreteEventSystem
Package: matlab

Event action before entity exit from storage

Syntax
[events]=exit(obj,storage,entity,destination)
[events,out1,...]=exit(obj,storage,entity,destination,in1,...)

Description
[events]=exit(obj,storage,entity,destination) specifies event actions of the object when
an entity exits a storage.

[events,out1,...]=exit(obj,storage,entity,destination,in1,...) specifies such event
actions of the object when the block has one or more input signal ports and/or signal output ports.

Input Arguments
obj — Discrete-event System object
MATLAB object

Discrete-event System object.

storage — Storage
double

Index of the storage element.

entity — Entity
MATLAB structure

Entity leaving storage element. Entity has these fields:

• sys (MATLAB structure) — It has these fields:

• id (double) — Entity ID
• priority (double) — Entity priority

• data — Entity data

destination — Destination
MATLAB structure

Destination of entity, such as an output port or a storage element. It has these fields:

• type (character vector) — Specify output, storage, or extract
• index (double) — Output or storage index

1 Functions

1-48

The type is specified as extract if an entity is being extracted from a Discrete-Event System block.

in1 — Data inputs
any value

Any data inputs of the object. These input arguments exist only when the object has data inputs.

Output Arguments
events — Events
vector of MATLAB structures

Events to be scheduled after the method returns. Use matlab.DiscreteEventSystem class
methods to create events. Each event has these fields:

• type (character vector) — Type of the event
• delay (double) — Delay before the event
• priority (double) — Priority of the event
• Storage (double) — Index of the storage element
• tag (character vector) — Event tag
• location (MATLAB structure) — Source or destination location of entity

out1 — Signal output
any value

Data outputs of the object. You must specify these output arguments when the object has data
outputs.

Examples

Refill Upon Entity Exit Storage

Create a new entity when an existing entity exits the storage element.

function events = exit(obj,storage,entity,dst)
 % Upon exit of an entity, display its ID and schedule to
 % generate a new entity.
 disp(['Entity of ID ' num2str(entity.sys.id) ' has exited']);
 events = obj.eventGenerate(storage, 'Refill', 1, entity.sys.priority);
end

Version History
Introduced in R2016a

See Also
matlab.DiscreteEventSystem | blocked | destroy | entry | generate |
getEntityPortsImpl | getEntityStorageImpl | getEntityTypesImpl | iterate |
setupEvents | timer

 exit

1-49

Topics
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-50

generate
Class: matlab.DiscreteEventSystem
Package: matlab

Event action upon entity creation

Syntax
[entity,events]=generate(obj,storage,entity,tag)
[entity,events,out1,...]=generate(obj,storage,entity,tag,in1,...)

Description
[entity,events]=generate(obj,storage,entity,tag) specifies event actions of the object
when an entity is created inside a storage component.

[entity,events,out1,...]=generate(obj,storage,entity,tag,in1,...) specifies such
event actions of the object when the block has one or more input signal ports and/or signal output
ports.

Input Arguments
obj — Discrete-event System object
MATLAB object

Discrete-event System object.

storage — Storage
double

Index of the storage element.

entity — Entity
MATLAB structure

Entity to create inside storage element. Entity has these fields:

• sys (MATLAB structure) — It has these fields:

• id (double) — Entity ID
• priority (double) — Entity priority

• data — Entity data

tag — Tag
character vector

Tag of the current entity generation event.

in1 — Input
any value

 generate

1-51

Any data inputs of the object. These input arguments exist only when the object has data inputs.

Output Arguments
entity — Entity
MATLAB structure

Entities created with possibly changed values.

events — Events
vector of MATLAB structures

Events to be scheduled for just after entities are created. Use matlab.DiscreteEventSystem class
methods to create events. Each event has these fields:

• type (character vector) — Type of the event
• delay (double) — Delay before the event
• priority (double) — Priority of the event
• Storage (double) — Index of the storage element
• tag (character vector) — Event tag
• location (MATLAB structure) — Source or destination location of entity

out1 — Data output
any value

Data outputs of the object. You must specify these output arguments when the object has data
outputs.

Examples
Set Initial Values When Entity is Generated

Initialize attribute values when entity is generated in a storage element.

function [entity,events] = generate(obj,storage,entity,tag)
 % Specify event actions when entity generated in storage.
 % - For entitiy generation event of tag 'Adam', initialize the
 % entity so that its attribute 'gender' has value '0', and its
 % priority is '200'.
 % - For entity generation event of tag 'Eve', initialize the
 % entity so that its attribute 'gender' has value '1', and its
 % priority is '100'.
 % - An event is returned to forward the entity to storage
 % element 2 with a time delay of 0.6.
 switch tag
 case 'Adam'
 entity.data.gender = 0;
 entity.sys.priority = 200;
 case 'Eve'
 entity.data.gender = 1;
 entity.sys.priority = 100;
 end

1 Functions

1-52

 events = obj.eventForward('storage',2,0.6);
end

Create a Custom Block to Generate Entities

This example shows how to create a custom source block that generates entities and to manage
discrete states when implementing the discrete-event System object methods.

For more information, see “Custom Entity Generator Block with Signal Input and Signal Output”.
classdef CustomEntityStorageBlockGeneration < matlab.DiscreteEventSystem...
 & matlab.System
 % A custom entity generator block.

 % Nontunable properties
 properties (Nontunable)
 % Generation period
 period = 1;
 end

 properties(DiscreteState)
 % Entity priority
 priority;
 % Entity value
 value;
 end

 % Discrete-event algorithms
 methods
 function [events, out1] = setupEvents(obj)
 % Set up entity generation events at simulation start.
 events = obj.eventGenerate(1,'mygen',obj.period,obj.priority);
 % Set up the initial value of the output signal.
 out1 = 10;
 end

 function [entity,events,out1] = generate(obj,storage,entity,tag,in1)
 % Specify event actions when entity is generated in storage.
 entity.data = obj.value;
 % The priority value is assigned from the input signal.
 obj.priority = in1;
 % Output signal is the assigned priority value.
 out1 = obj.priority;
 events = [obj.eventForward('output',1,0) ...
 obj.eventGenerate(1,'mygen',obj.period,obj.priority)];
 end
 end

 methods(Access = protected)

 function entityTypes = getEntityTypesImpl(obj)
 entityTypes = obj.entityType('Material');
 end

 function [inputTypes,outputTypes] = getEntityPortsImpl(obj)
 % Specify entity input and output ports. Return entity types at
 % a port as strings in a cell array. Use empty string to
 % indicate a data port.
 inputTypes = {''};
 outputTypes = {'Material',''};
 end

 function resetImpl(obj)
 % Initialize / reset discrete-state properties.
 obj.priority = 10;
 obj.value = 1:12;
 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = obj.queueFIFO('Material', 1);
 I = 0;
 O = [1 0];
 end

 function num = getNumInputsImpl(obj)
 % Define total number of inputs for system with optional
 % inputs.
 num = 1;

 generate

1-53

 end

 function num = getNumOutputsImpl(~)
 % Define total number of outputs.
 num = 2;
 end
 function [out1 out2] = getOutputSizeImpl(obj)
 % Return size for each output port.
 out1 = [1 12];
 out2 = 1;
 end

 function [out1 out2] = getOutputDataTypeImpl(obj)
 % Return data type for each output port.
 out1 = "double";
 out2 = "double";
 end

 function [out1 out2] = isOutputComplexImpl(obj)
 % Return true for each output port with complex data.
 out1 = false;
 out2 = false;
 end

 function [sz,dt,cp] = getDiscreteStateSpecificationImpl(obj,name)
 % Return size, data type, and complexity of discrete-state
 % specified in name.
 switch name
 case 'priority'
 sz = [1 1];
 case 'value'
 sz = [1 12];
 end
 dt = "double";
 cp = false;
 end
 end
end

Version History
Introduced in R2016a

See Also
matlab.DiscreteEventSystem | blocked | destroy | entry | exit | getEntityPortsImpl |
getEntityStorageImpl | getEntityTypesImpl | iterate | setupEvents | timer

Topics
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-54

getEntityPortsImpl
Class: matlab.DiscreteEventSystem
Package: matlab

Define input ports and output ports of discrete-event system

Syntax
[inputTypes,outputTypes]=getEntityPortsImpl(obj)

Description
[inputTypes,outputTypes]=getEntityPortsImpl(obj) defines input ports and output ports
of a discrete-event system.

Input Arguments
obj — Discrete-event System object
MATLAB object

Discrete-event System object.

Output Arguments
inputTypes — Input types
cell vector of character vectors

Input port types of a discrete-event system, specified as a cell vector of character vectors with a
length that is the same as the number of input ports.

The Nth element of the vector that specifies the type of the Nth input port.

• If the port is an entity port, the character vector indicates the entity type name of this port. The
name must match one of the entity types specified in getEntityTypesImpl.

• If the port is a signal port, the character vector must be empty ('').

outputTypes — Output types
cell vector of character vectors

Output port types of a discrete-event system, specified as a cell vector with a length that is the same
as the number of output ports.

The Nth element of the vector that specifies type of the Nth output port.

• If the port is an entity port, the character vector indicates the entity type name of this port. The
name must match one of the entity types specified in getEntityTypesImpl.

• If the port is a signal port, the character vector must be empty ('').

 getEntityPortsImpl

1-55

Examples

Get Entity Inputs and Outputs for Discrete-Event System

Get entity input and output port types for discrete-event system.

function [inputTypes,outputTypes] = getEntityPortsImpl(obj)
 % Specify input and output port types.
 %
 % This implementation further specifies port type and entity
 % type at these inputs and outputs:
 % Inputs:
 % 1. Signal port
 % 2. Entity port receiving entities of type 'entity1'
 % 3. Entity port receiving entities of type 'entity2'
 % Outputs:
 % 1. Signal port
 % 2. Entity port sending entities of type 'entity2'
 %
 % The discrete-event system must have already defined:
 % - 3 inputs (by method 'getNumInputsImpl') and
 % - 2 outputs (by method 'getNumOutputsImpl')
 inputTypes = {'', 'entity1', 'entity2'};
 outputTypes = {'', 'entity2'};
end

Version History
Introduced in R2016a

See Also
matlab.DiscreteEventSystem | getEntityStorageImpl | getEntityTypesImpl

Topics
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-56

getEntityStorageImpl
Class: matlab.DiscreteEventSystem
Package: matlab

Define entity storage elements of discrete-event system

Syntax
[storageSpecs,I,O]=getEntityStorageImpl(obj)

Description
[storageSpecs,I,O]=getEntityStorageImpl(obj) defines entity storage elements of a
discrete-event system.

Input Arguments
obj — Discrete-event System object
MATLAB object

Discrete-event System object.

Output Arguments
storageSpecs — Storage specifications
vector of MATLAB structures

Entity storage specifications of a discrete-event system, specified as a vector of MATLAB structures
with its length indicating number of entity storage elements of the discrete-event system. The Nth
element of the vector defines an entity storage element with index N. Use utility methods such as
queueFIFO to create such definition as a MATLAB structure.

I — Connections between input ports and entity storage elements
cell array

Define connections between input ports and entity storage elements as a cell array. The length of the
cell array must match the number of input ports of this discrete-event system. The Nth element of the
cell array defines the connection between the Nth input port and any entity storage element. If the
input port is an entity port, a valid entity storage index must be specified. If the input port is a signal
port, the element takes a value of zero.

You can connect multiple entity input ports to a common storage element.

O — Connections between output ports and entity storage elements
cell array

Define connections between output ports and entity storage elements as a cell array. The length of
the cell array must match the number of output ports of this discrete-event system. The Mth element
of the cell array defines the connections between the Mth output port and any entity storage
elements. If the output port is an entity port, specify one of these:

 getEntityStorageImpl

1-57

• A scalar indicating a single connection from a storage element to the output port.
• A vector indicating multiple connections from multiple storage elements to the output port.

If the output port is a signal port, the element takes a value of zero.

You can connect multiple entity output ports to a common storage element.

Examples

Specify Entity Storage Elements

Specify entity storage elements and connections between entity input ports and storage elements for
the discrete-event system object.

function [storageSpecs, I] = getEntityStorageImpl(obj)
 % Specify entity storage elements and connections between
 % entity input ports and storage elements.
 %
 % The implementation specifies two storage elements for the
 % discrete-event system:
 % 1. A priority queue
 % - Stores entities of type 'student'
 % - Has maximal capacity of 25
 % - Sort entities by an attribute named 'age', in ascending
 % direction
 % 2. A FIFO queue
 % - Stores entities of type 'student'
 % - Has maximal capacity of 10
 % - Sort entities in a First-In-First-Out order
 %
 % The implementation also specifies that the entity input port
 % of the discrete-event system is connected to the 2nd storage
 % element.
 %
 % Other methods of the discrete-event system must have defined:
 % - An entity type named 'student' (by method 'getEntityTypesImpl')
 % - An entity input port (by method 'getEntityPortsImpl')
 %
 storageSpecs = [...
 obj.queuePriority('student', 25, 'age', 'ascending'), ...
 obj.queueFIFO('student', 10)];
 I = 2;
end

Version History
Introduced in R2016a

See Also
matlab.DiscreteEventSystem | getEntityTypesImpl | queueFIFO | queueLIFO |
queuePriority | queueSysPriority

Topics
“Delay Entities with a Custom Entity Storage Block”

1 Functions

1-58

“Create a Custom Entity Storage Block with Iteration Event”
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

 getEntityStorageImpl

1-59

getEntityTypesImpl
Class: matlab.DiscreteEventSystem
Package: matlab

Define entity types of discrete-event system

Syntax
entityTypes=getEntityTypesImpl(obj)

Description
entityTypes=getEntityTypesImpl(obj) defines entity types of a discrete-event system.

Input Arguments
obj — Discrete-event System object
MATLAB object

Discrete-event System object.

Output Arguments
entityTypes — Entity types
vector of MATLAB structures

Entity types returned as a vector whose length is the same as the number of entity types. Each vector
element is a structure containing the entity type properties:

• Name
• Data dimension
• Data type
• Complexity

Examples

Get Entity Types

Get entity types entity1 and entity2 for discrete-event system, obj.

function entityTypes = getEntityTypesImpl(obj)
 % Define entity type 'type1' with inherited data type, dimension
 % and complexity
 t1 = obj.entityType('type1');

 % Define entity type 'type2' with specified data type ('mybus'),
 % default dimension and complexity (i.e. scalar real values)

1 Functions

1-60

 t2 = obj.entityType('type2', 'mybus');

 % Define entity type 'type3' with specified data type ('double'),
 % dimension (2 by 3 matrix), and complexity (complex)
 t3 = obj.entityType('type3', 'double', [2 3], true);

 entityTypes = [t1, t2, t3];
end

Version History
Introduced in R2016a

See Also
matlab.DiscreteEventSystem | entityType | getEntityPortsImpl |
getEntityStorageImpl

Topics
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

 getEntityTypesImpl

1-61

getResourceNamesImpl
Class: matlab.DiscreteEventSystem
Package: matlab

Define resource pools from which to acquire resources

Syntax
resourceNames = getResourceNamesImpl(obj)

Description
resourceNames = getResourceNamesImpl(obj) defines resource pools from which the discrete
event system acquires resources.

Input Arguments
obj — Discrete-event System object
MATLAB object

Discrete-event System object.

Output Arguments
resourceNames — Resource names
vector of MATLAB structures

Resource pools from which to acquire resources, specified as a vector of MATLAB structures. Use
resourceType method to create this array.

Examples

Define Resource Pools

Use this method together with resourceType to specify the resources of types Test1 and Test2 to
be acquired by the entity type Part.

function resourceNames = getResourceNamesImpl(obj)
 % Define the names of the resources to be acquired.
 resourceNames = obj.resourceType('Part', {'Test1', 'Test2'}) ;
end

Version History
Introduced in R2019a

1 Functions

1-62

See Also
matlab.DiscreteEventSystem | eventForward | cancelAcquireResource |
resourceAcquired | eventReleaseResource | resourceType

Topics
“Create a Custom Resource Acquirer Block”
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

 getResourceNamesImpl

1-63

initEventArray
Class: matlab.DiscreteEventSystem
Package: matlab

Initialize event array

Syntax
event = initEventArray()

Description
event = initEventArray() creates an empty array of event structures, to initialize the return of
an event action method such as matlab.DiscreteEventSystem.entry. This method enables you
to append elements to the array in the MATLAB Discrete-Event System block when the Code
generation is selected for the Simulate using parameter.

Output Arguments
event — Array of event structures
Array

Array of event structures, specified as a MATLAB structures.

Examples
Initialize Returned Event Array

Initialize returned event array for the exit method.

function events = exit(obj, ~, entity, ~)
 events = obj.initEventArray;
 if entity.data == 1
 events = obj.eventTimer('exit', 0);
 end
end

Version History
Introduced in R2017b

See Also
getEntityStorageImpl | queueLIFO | queuePriority | queueSysPriority

Topics
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-64

initResourceArray
Class: matlab.DiscreteEventSystem
Package: matlab

Initialize a resource specification array

Syntax
resArray = initResourceArray()

Description
resArray = initResourceArray() initializes an empty array of resourceSpecification. This
method enables you to append elements to the array in the MATLAB Discrete-Event System block
when you select the Code generation for the Simulate using parameter.

Output Arguments
resArray — Resource specifications
Array

Resource specifications specified as an empty array.

Examples

Initialize Resource Array

An entity entry to the storage element invokes two timer events. resourceSpecification defines
the type and the amount of resources an entity acquires. The entity acquires a resource of type
Test1 if the timer with tag ProcessComplete expires. The entity acquires a resource of type Test2
if the timer with tag TimeOut expires. The resRequest array is initialized by the
initResourceArray method for code generation.

function [entity,event] = entry(obj,storage,entity,source)
 % Specify event actions when entity enters storage.
 ProcessingTime=randi([1 15]);
 % Define two timer events.
 event1 = obj.eventTimer('TimeOut',10);
 event2 = obj.eventTimer('ProcessComplete', ProcessingTime);
 event=[event1 event2];
end

function [entity, event] = timer(obj,storage,entity,tag)
 % Specify event actions when a timer expires.
 resRequest = obj.initResourceArray();
 switch tag
 case 'ProcessComplete'
 resRequest = obj.resourceSpecification('Test1', 1);
 case 'TimeOut'
 resRequest = obj.resourceSpecification('Test2', 1);
 end

 initResourceArray

1-65

 event = obj.eventAcquireResource(resRequest, 'MyResourceAcquireEvent');
end

Version History
Introduced in R2019a

See Also
matlab.DiscreteEventSystem | eventForward | getResourceNamesImpl |
resourceReleased | eventReleaseResource | resourceSpecification

Topics
“Create a Custom Resource Acquirer Block”
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-66

iterate
Class: matlab.DiscreteEventSystem
Package: matlab

Event action when entity iterates

Syntax
[entity,events,next]=iterate(obj,storage,entity,tag,cur)
[entity,events,next,out1,...]=iterate(obj,storage,entity,tag,cur,in1,...)

Description
[entity,events,next]=iterate(obj,storage,entity,tag,cur) specifies event actions for
when an entity is processed as a part of an iterate event.

[entity,events,next,out1,...]=iterate(obj,storage,entity,tag,cur,in1,...)
specifies such event actions when the block has one or more input signal ports and/or signal output
ports.

Input Arguments
obj — Discrete-event System object
MATLAB object

Discrete-event System object.

storage — Storage
double

Index of the storage element.

entity — Entity
MATLAB structure

Entity currently being processed. Entity has these fields:

• sys (MATLAB structure) — It has these fields:

• id (double) — Entity ID
• priority (double) — Entity priority

• data — Entity data

tag — Tag
character vector

Tag of the current entity iterate event.

cur — Current state
MATLAB structure

 iterate

1-67

MATLAB structure indicating current state of iteration. The structure has these fields:

• size

Total number of entities the storage has
• position

Position of the current iterating entity

in1 — Signal input
any value

Any data inputs of the object. These input arguments exist only when the object has data inputs.

Output Arguments
entity — Entity
MATLAB structure

Entity being processed, possibly with changed data.

events — Events
vector of MATLAB structures

Events to be scheduled after the method returns. Use matlab.DiscreteEventSystem class
methods to create events. Each event has these fields:

• type (character vector) — Type of the event
• delay (double) — Delay before the event
• priority (double) — Priority of the event
• Storage (double) — Index of the storage element
• tag (character vector) — Event tag
• location (MATLAB structure) — Source or destination location of entity

next — Iteration
logical | double

• True

Continue to process the next entity in the storage element.
• False

Terminate the iterate event, and leave the rest of the entities of the storage element unprocessed.

out1 — Signal output
any value

Data outputs of the object. You must specify these output arguments when the object has data
outputs.

1 Functions

1-68

Examples
Forward the First Entity

Forward the first entity with matching data value to output port 1 of the discrete-event system.

function [entity,events,next] = iterate(obj,storage,entity,tag,status)
 % Forward the first entity with matching data value to output
 % port 1 of the discrete-event system.
 disp(['Searching in storage element ' num2str(storage)]);
 disp([' Total size = ' num2str(status.size)]);
 disp([' Current position = ' num2str(status.position)]);
 if (entity.data == obj.dataToSearch)
 events = obj.eventForward('output', 1, 0);
 next = false; % Found -- early terminate
 else
 events = [];
 next = true; % Not yet found -- continue
 end
end

Custom Entity Storage Block with Iteration Event

In this example, a custom block allows entities to enter its storage element through its input port. The
storage element is a priority queue that sorts the entities based on their Diameter attribute in
ascending order. Every entity entry to the block's storage invokes an iteration event to display the
diameter and the position of each entity in the storage.

For more information, see “Create a Custom Entity Storage Block with Iteration Event”.
classdef CustomEntityStorageBlockIteration < matlab.DiscreteEventSystem

 % A custom entity storage block with one input port and one storage element.

 % Nontunable properties
 properties (Nontunable)
 % Capacity
 Capacity = 5;
 end
 % Create the storage element with one input and one storage.
 methods (Access=protected)

 function num = getNumInputsImpl(obj)
 num = 1;
 end

 function num = getNumOutputsImpl(obj)
 num = 0;
 end

 function entityTypes = getEntityTypesImpl(obj)
 entityType1 = obj.entityType('Wheel');
 entityTypes = entityType1;
 end

 function [inputTypes,outputTypes] = getEntityPortsImpl(obj)
 inputTypes = {'Wheel'};
 outputTypes={};

 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = obj.queuePriority('Wheel',obj.Capacity, 'Diameter','ascending');
 I = 1;
 O = [];

 end

 end

 iterate

1-69

 % Entity entry event action
 methods

 function [entity, event] = WheelEntry(obj,storage,entity, source)
 % Entity entry invokes an iterate event.
 event = obj.eventIterate(1, '');
 end

 % The itarate event action
 function [entity,event,next] = WheelIterate(obj,storage,entity,tag,cur)
 % Display wheel id, position in the storage, and diameter.
 coder.extrinsic('fprintf');
 fprintf('Wheel id %d, Current position %d, Diameter %d\n', ...
 entity.sys.id, cur.position, entity.data.Diameter);
 if cur.size == cur.position
 fprintf('End of Iteration \n')
 end
 next = true;
 event=[];
 end

 end

end

Version History
Introduced in R2016a

See Also
matlab.DiscreteEventSystem | blocked | destroy | entry | exit | generate |
getEntityPortsImpl | getEntityStorageImpl | getEntityTypesImpl | setupEvents |
timer

Topics
“Create a Custom Entity Storage Block with Iteration Event”
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-70

modified
Class: matlab.DiscreteEventSystem
Package: matlab

Event action upon entity modification by the Entity Find block

Syntax
[events] = modified(obj,storage,entity)
[events, out1, ...] = modified(obj,storage,entity,in1,...)

Description
[events] = modified(obj,storage,entity) specifies event actions of the object after an
entity is modified.

[events, out1, ...] = modified(obj,storage,entity,in1,...) specifies event actions of
the object when the block has one or more input signal ports and/or signal output ports.

Input Arguments
obj — Discrete-event System object
MATLAB object

Discrete-event System object.

storage — Storage
double

Index of the storage element where the entity is being modified.

entity — Entity
MATLAB structure

Entity that is being modified. Entity has these fields:

• sys (MATLAB structure) — It has these fields:

• id (double) — Entity ID
• priority (double) — Entity priority

• data — Entity data

in1 — Signal input
any value

Any data inputs of the object. These input arguments exist only when the object has data inputs.

 modified

1-71

Output Arguments
events — Events
vector of MATLAB structures

Events to be scheduled after the method returns. Use matlab.DiscreteEventSystem class
methods to create events. Each event has these fields:

• type (character vector) — Type of the event
• delay (double) — Delay before the event
• priority (double) — Priority of the event
• Storage (double) — Index of the storage element
• tag (character vector) — Event tag
• location (MATLAB structure) — Source or destination location of entity

out1 — Signal output
any value

Data outputs of the object. You must specify these output arguments when the object has data
outputs.

Examples

Event Action Upon Entity Modification

Specify event action to be performed after entity modification in a storage

function events = modified(obj,storage,entity)
 events = [];
 % If the delay attribute of the entity exceeds 100, destroy the entity
 if entity.data.delay > 100
 events = obj.destroy();
 end
end

Version History
Introduced in R2018b

See Also
matlab.DiscreteEventSystem | blocked | destroy | entry | generate | iterate |
setupEvents | timer

Topics
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-72

queueFIFO
Class: matlab.DiscreteEventSystem
Package: matlab

Define first-in first-out (FIFO) queue storage

Syntax
storage = queueFIFO(entityType,capacity)

Description
storage = queueFIFO(entityType,capacity) defines a FIFO queue storage element. Use this
function when implementing the getEntityStorageImpl method.

Note This page describes the queueFIFO method to create a custom discrete-event system block.
See Entity Queue block provided by the SimEvents library to use a queue with FIFO sorting policy.

Input Arguments
entityType — Entity type
character vector

Type of entities that the new storage element works with.

capacity — Maximum number of entities
double

Maximum number of entities that the storage can contain, specified as a double.

Output Arguments
storage — Storage
MATLAB structure

Queue storage that contains entities and sorts them in FIFO order.

Examples

Specify FIFO Queue Entity Storage

Specify FIFO queue entity storage for the discrete-event system object.

% Define a storage element as a FIFO queue
% - Entities in the queue are sorted in First-In-First-Out (FIFO) order
% - Queue can store entities of type 'myEntity'

 queueFIFO

1-73

% - Queue can store no more than 25 entities
storage = obj.queueFIFO('myEntity', 25);

Create a Custom Entity Storage Block to Delay Entities

This example shows how to use discrete-event System object methods to create a custom entity
storage block that has one input port, one output port, and one storage element. The discrete-event
System object is the instantiation of the matlab.DiscreteEventSystem class, which allows you to
use the implementation and service methods provided by this class. Then, you use the MATLAB
Discrete-Event System block to integrate the System object into a SimEvents model. The custom
MATLAB Discrete-Event System block accepts an entity from its input port and forwards it to its
output port with a specified delay. For more information, see “Delay Entities with a Custom Entity
Storage Block”.

classdef CustomEntityStorageBlock < matlab.DiscreteEventSystem

 % A custom entity storage block with one input, one output, and one storage.

 % Nontunable properties
 properties (Nontunable)
 % Capacity
 Capacity = 1;
 % Delay
 Delay=4;
 end

 methods (Access=protected)
 function num = getNumInputsImpl(~)
 num = 1;
 end

 function num = getNumOutputsImpl(~)
 num = 1;
 end

 function entityTypes = getEntityTypesImpl(obj)
 entityTypes = obj.entityType('Car');
 end

 function [inputTypes,outputTypes] = getEntityPortsImpl(obj)
 inputTypes = {'Car'};
 outputTypes = {'Car'};
 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = obj.queueFIFO('Car', obj.Capacity);
 I = 1;
 O = 1;
 end

 end

 methods

 function [entity,event] = CarEntry(obj,storage,entity,source)
 % Specify event actions when entity enters storage.

 event = obj.eventForward('output', 1, obj.Delay);

 end

 end

end

Version History
Introduced in R2016a

1 Functions

1-74

See Also
getEntityStorageImpl | queueLIFO | queuePriority | queueSysPriority

Topics
“Delay Entities with a Custom Entity Storage Block”
“Create a Custom Entity Storage Block with Iteration Event”
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

 queueFIFO

1-75

queueLIFO
Class: matlab.DiscreteEventSystem
Package: matlab

Define last-in last-out (LIFO) stack storage

Syntax
storage=queueLIFO(entityType,capacity)

Description
storage=queueLIFO(entityType,capacity) defines a LIFO stack storage element. Use this
function when implementing the getEntityStorageImpl method.

Input Arguments
entityType — Entity type
character vector

Type of entities that the new storage element works with.

capacity — Capacity
double

Maximum number of entities that the storage can contain, specified as a double.

Output Arguments
storage — Storage
MATLAB structure

Stack storage that contains entities and sorts them in a LIFO order.

Examples

Define LIFO Stack Storage

Define LIFO stack storage.

% Define a storage element as a LIFO queue
% - Entities in the queue are sorted in Last-In-First-Out (LIFO) order
% - Queue can store entities of type 'myEntity'

1 Functions

1-76

% - Queue can store no more than 25 entities
storage = obj.queueLIFO('myEntity', 25);

Version History
Introduced in R2016a

See Also
getEntityStorageImpl | queueFIFO | queuePriority | queueSysPriority

Topics
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

 queueLIFO

1-77

queuePriority
Class: matlab.DiscreteEventSystem
Package: matlab

Define priority queue storage

Syntax
storage=queuePriority(entityType,capacity,key,order)

Description
storage=queuePriority(entityType,capacity,key,order) defines a priority queue that
sorts entities by custom attribute. Use this function when implementing the
getEntityStorageImpl method.

Input Arguments
entityType — Entity type
character vector

Type of entities that the new storage element works with.

capacity — Capacity
double

Maximum number of entities that the storage can contain, specified as a double.

key — Key
character vector

Name of the attribute that is used as the key for sorting.

order — Sorting order
character vector

Direction of sorting. Specify 'ascending' if you want entities with smaller key values to appear in
front of the queue. Specify 'descending' if you want entities with greater key values to appear in
front of the queue.

Output Arguments
storage — Storage
MATLAB structure

Queue storage element that contains entities and sorts them using a custom attribute.

1 Functions

1-78

Examples
Define Storage Element as a Priority Queue

Define storage element as a priority queue.

% Define a storage element as a priority queue
% - Queue sorts entities using a specific attribute of the entities
% - Queue can store entities of type 'myEntity'
% - Queue can store no more than 25 entities
% - Queue uses the attribute 'age' to sort entities
% - Sorting direction is 'ascending', resulting entities with
% smaller 'age' attribute values to appear in front of the queue
storage = obj.queuePriority('myEntity', 25, 'age', 'ascending');

Custom Entity Storage Block with Iteration Event

In this example, a custom block allows entities to enter its storage element through its input port. The
storage element is a priority queue that sorts the entities based on their Diameter attribute in
ascending order. Every entity entry to the block's storage invokes an iteration event to display the
diameter and the position of each entity in the storage.

For more information, see “Create a Custom Entity Storage Block with Iteration Event”.
classdef CustomEntityStorageBlockIteration < matlab.DiscreteEventSystem

 % A custom entity storage block with one input port and one storage element.

 % Nontunable properties
 properties (Nontunable)
 % Capacity
 Capacity = 5;
 end
 % Create the storage element with one input and one storage.
 methods (Access=protected)

 function num = getNumInputsImpl(obj)
 num = 1;
 end

 function num = getNumOutputsImpl(obj)
 num = 0;
 end

 function entityTypes = getEntityTypesImpl(obj)
 entityType1 = obj.entityType('Wheel');
 entityTypes = entityType1;
 end

 function [inputTypes,outputTypes] = getEntityPortsImpl(obj)
 inputTypes = {'Wheel'};
 outputTypes={};

 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = obj.queuePriority('Wheel',obj.Capacity, 'Diameter','ascending');
 I = 1;
 O = [];

 end

 end
 % Entity entry event action
 methods

 function [entity, event] = WheelEntry(obj,storage,entity, source)
 % Entity entry invokes an iterate event.
 event = obj.eventIterate(1, '');
 end

 queuePriority

1-79

 % The itarate event action
 function [entity,event,next] = WheelIterate(obj,storage,entity,tag,cur)
 % Display wheel id, position in the storage, and diameter.
 coder.extrinsic('fprintf');
 fprintf('Wheel id %d, Current position %d, Diameter %d\n', ...
 entity.sys.id, cur.position, entity.data.Diameter);
 if cur.size == cur.position
 fprintf('End of Iteration \n')
 end
 next = true;
 event=[];
 end

 end

end

Version History
Introduced in R2016a

See Also
getEntityStorageImpl | queueFIFO | queueLIFO | queueSysPriority

Topics
“Create a Custom Entity Storage Block with Iteration Event”
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-80

queueSysPriority
Class: matlab.DiscreteEventSystem
Package: matlab

Define system priority queue storage

Syntax
storage=queueSysPriority(entityType,capacity,order)

Description
storage=queueSysPriority(entityType,capacity,order) defines a priority queue storage
element that sorts entities by their system priorities. Use this method when implementing the
getEntityStorageImpl method.

Input Arguments
entityType — Entity type
character vector

Type of entities that the new storage element works with.

capacity — Capacity
double

Maximum number of entities that the storage can contain, specified as a double.

order — Sorting order
character vector

Direction of sorting. Specify 'ascending' if you want entities with smaller system priority values
(higher priority) to appear in front of the queue. Use 'descending' if you want entities with higher
system priority values (lower priority) to appear in front of the queue.

Output Arguments
storage — Storage
MATLAB structure

Queue storage element that contains entities and sorts them by the entities’ system priorities.

Examples

Define Storage Element as System Priority Queue

Define a storage element that uses an entity system priority for sorting.

 queueSysPriority

1-81

% - Queue sorts entities using entity priority (i.e.
% the field 'entVar.sys.priority' on a MATLAB variable 'entVar'
% representing a SimEvents entity)
% - Queue can store entities of type 'myEntity'
% - Queue can store no more than 25 entities
% - Sorting direction is 'ascending', resulting entities with
% higher priority (or smaller entity priority values) to appear
% in the front of the queue
storage = obj.queueSysPriority('myEntity', 25, 'ascending');

Version History
Introduced in R2016a

See Also
getEntityStorageImpl | queueFIFO | queueLIFO | queuePriority

Topics
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-82

resourceAcquired
Class: matlab.DiscreteEventSystem
Package: matlab

Event action upon successful resource acquisition

Syntax
[entity,event,out1,...] = resourceAcquired(obj,storage,entity,resources,tag,
in1,...)

Description
[entity,event,out1,...] = resourceAcquired(obj,storage,entity,resources,tag,
in1,...) specifies event action for a discrete-event System object upon successful acquisition of a
resource. Resource acquisition is successful only if all of the specified resources are acquired.

Input Arguments
obj — Discrete-event System object
MATLAB object

Discrete-event System object.

storage — Storage that the entity resides in
double

Index of the storage element.

entity — Entity that is acquiring the resources
MATLAB structure

Entity that acquires the resource. Entity has these fields:

• sys (MATLAB structure) consisting of:

• id (double) — Entity ID
• priority (double) — Entity priority

• data — Entity data

resources — Acquired resources
MATLAB structure

An array of structures that specifies the resources that have been acquired.

tag — Tag of the resource acquisition event
character vector

Tag of the currently executing resource acquisition event.

 resourceAcquired

1-83

in1 — First data input
character vector

First data input.

Output Arguments
entity — Entity with changed value
MATLAB structure

Entity acquiring the resource.

event — Events to be scheduled
vector of MATLAB structures

Events to be scheduled. Use matlab.DiscreteEventSystem class methods to create events. Each
event has these fields:

• type (character vector) — Type of the event
• delay (double) — Delay before the event
• priority (double) — Priority of the event
• storage (double) — Index of the storage element
• tag (character vector) — Event tag
• location (MATLAB structure) — Source or destination (see “source” on page 1-0)

out1 — First data output
character vector

First data output.

Examples
Event Action on Resource Acquisition

Suppose that an entity acquires resources successfully with a scheduled eventAcquireResource
and the tag of this event is MyResourceAcquireEvent. Then this acquisition invokes the
resourceAcquired method to forward entities to the output.

function [entity,events] = entry(obj, storage, entity, source)
 % On entry, acquire one resource of type Resource1.
 resRequest = obj.resourceSpecification('Resource1', 1);
 events = obj.eventAcquireResource(resRequest, 'MyResourceAcquireEvent');
end

function [entity,events] = resourceAcquired(obj, storage,...
 entity, resources, tag)
 % After resource acquisition, forward the entity to the output.
 events = obj.eventForward('output', storage, 0.0);
end

Custom Resource Acquirer

This example shows how to use resource management methods to create a custom entity storage
block in which entities acquire resources from specified Resource Pool blocks.

1 Functions

1-84

Suppose that you manage a facility that produces parts from two different materials, material 1 and
material 2, to fulfill orders. After a part is produced, it is evaluated for quality assurance.

Two testing methods for quality control are:

• Test 1 is used for parts that are produced from material 1.
• Test 2 is used for parts that are produced from material 2

After the production phase, parts are tagged based on their material to apply the correct test.

For more information, see “Create a Custom Resource Acquirer Block”.
classdef CustomBlockAcquireResources < matlab.DiscreteEventSystem
 % Custom resource acquire block example.

 methods(Access = protected)

 function num = getNumInputsImpl(obj)
 num = 1;
 end

 function num = getNumOutputsImpl(obj)
 num = 1;
 end

 function entityTypes = getEntityTypesImpl(obj)
 entityTypes(1) = obj.entityType('Part');
 end

 function [input, output] = getEntityPortsImpl(obj)
 input = {'Part'};
 output = {'Part'};
 end

 function [storageSpec, I, O] = getEntityStorageImpl(obj)
 storageSpec(1) = obj.queueFIFO('Part', 1);
 I = 1;
 O = 1;
 end

 function resNames = getResourceNamesImpl(obj)
 % Define the names of the resources to be acquired.
 resNames = obj.resourceType('Part', {'Test1', 'Test2'}) ;
 end

 end

 methods

 function [entity,events] = entry(obj, storage, entity, source)
 % On entity entry, acquire a resource from the specified pool.
 if entity.data.Test == 1
 % If the entity is produced from Material1, request Test1.
 resReq = obj.resourceSpecification('Test1', 1);
 else
 % If the entity is produced from Material2, request Test2.
 resReq = obj.resourceSpecification('Test2', 1);
 end
 % Acquire the resource from the corresponding pool.
 events = obj.eventAcquireResource(resReq, 'TestTag');
 end

 function [entity,events] = resourceAcquired(obj, storage,...
 entity, resources, tag)
 % After the resource acquisition, forward the entity to the output.
 events = obj.eventForward('output', storage, 0.0);
 end

 end

end

 resourceAcquired

1-85

Version History
Introduced in R2019a

See Also
matlab.DiscreteEventSystem | eventForward | cancelAcquireResource |
getResourceNamesImpl | resourceReleased | eventAcquireResource

Topics
“Create a Custom Resource Acquirer Block”
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-86

resourceReleased
Class: matlab.DiscreteEventSystem
Package: matlab

Event action upon successful resource release

Syntax
[entity,event,out1,...] = resourceReleased(obj,storage,entity,resources,tag,
in1,...)

Description
[entity,event,out1,...] = resourceReleased(obj,storage,entity,resources,tag,
in1,...) specifies event actions for a discrete-event System object upon successful resource
release.

Input Arguments
obj — Discrete-event System object
MATLAB object

Discrete-event System object.

storage — Storage
double

Index of the storage element.

entity — Entity
MATLAB structure

Entity releasing the resource. Entity has these fields:

• sys (MATLAB structure) consisting of:

• id (double) — Entity ID
• priority (double) — Entity priority

• data — Entity data

resources — Released resources
MATLAB structure

An array of structures that specifies the resources that have been released.

tag — Tag of the resource release event
character vector

Tag of the currently executing resource release event.

 resourceReleased

1-87

in1 — First data input
character vector

First data input.

Output Arguments
entity — Entity
MATLAB structure

Entity releasing the resource.

event — Event
vector of MATLAB structures

Events to be scheduled. Use matlab.DiscreteEventSystem class methods to create events. Each
event has these fields:

• type (character vector) — Type of the event
• delay (double) — Delay before the event
• priority (double) — Priority of the event
• storage (double) — Index of the storage element
• tag (character vector) — Event tag
• location (MATLAB structure) — Source or destination location of entity (see “source” on page

1-0)

out1 — First data output
character vector

First data output.

Examples

Event Action on Resource Release

Suppose that an entity releases resources successfully with a scheduled eventReleaseResource
method and the tag of this event is MyResourceAcquireEvent. The successful release of the
resources invokes the resourceReleased method to forward the entity to the output.
function [entity,events] = entry(obj, storage, entity, source)
 % On entry, release one resource of type Resource1.
 resRequest = obj.resourceSpecification('Resource1', 1);
 events = obj.eventReleaseResource(resRequest, 'MyResourceAcquireEvent');
end

function [entity,events] = resourceReleased(obj, storage,...
 entity, resources, tag)
 % After resource release, forward the entity to the output.
 events = obj.eventForward('output', storage, 0.0);
end

Version History
Introduced in R2019a

1 Functions

1-88

See Also
matlab.DiscreteEventSystem | eventForward | cancelAcquireResource |
getResourceNamesImpl | resourceAcquired | eventReleaseResource

Topics
“Create a Custom Resource Acquirer Block”
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

 resourceReleased

1-89

resourceSpecification
Class: matlab.DiscreteEventSystem
Package: matlab

Create specifications for a resource acquisition or a resource release event

Syntax
resRequest = resourceSpecification(resource,amount)

Description
resRequest = resourceSpecification(resource,amount) specifies the names and the
amount of the resources for the eventAcquireResource or the eventReleaseResource requests.

For example, this code specifies one unit of Resource1 and two units of Resource2.

resRequest = obj.resourceSpecification('Resource1', 1);
resRequest = [resReq obj.resourceSpecification('Resource2', 2)];

If you specify an amount for the eventReleaseResource larger than the amount that was acquired
earlier, all the previously acquired resources are released.

For example, suppose that an entity previously acquired three resources of type Resource1 and four
resources of type Resource2. This code specifies the amounts for eventReleaseResource.

resRequest = obj.resourceSpecification('Resource1', 2);
resRequest = [resReq obj.resourceSpecification('Resource2', 5)];
 event = eventReleaseResource(resReq, ‘relinquish’);

After the release, the entity has one resource of type Resource1 and zero resources of type
Resource2.

You can specify the release of all previously acquired resources by using
eventReleaseAllResources.

Input Arguments
resource — Specify the name of resources for acquisition or release requests
character vector

Specify the name of the resources for the eventAcquireResource or the eventReleaseResource
requests. You can specify more than one resource.

amount — Specify the amount of resources for acquisition or release requests
double

Specify the amount of resources for the eventAcquireResource or the eventReleaseResource
requests.

1 Functions

1-90

Output Arguments
resRequest — Resource request
vector of MATLAB structures

Resource request for an acquisition or a release event specified as a vector of MATLAB structures.

Examples
A Simple Resource Specification Example

When an entity enters the storage element, it acquires resources. The entity acquires one resource of
type Resource1 and one resource of type Resource2, which are defined as specifications. The
specifications are then used for eventAcquireResource with tag MyResourceAcquireEvent.
 function [entity,events] = entry(obj, storage, entity, source)
 % On entry, acquire one resource of type Resource1 and one resource of type Resource2.
 resRequest(1) = obj.resourceSpecification('Resource1', 1);
 resRequest(2) = obj.resourceSpecification('Resource2', 1);
 events = obj.eventAcquireResource(resRequest, 'MyResourceAcquireEvent');
 end

Resource Specification in a Custom Resource Acquirer Block

This example shows how to use resource management methods to create a custom entity storage
block in which entities acquire resources from specified Resource Pool blocks.

Suppose that you manage a facility that produces parts from two different materials, material 1 and
material 2, to fulfill orders. After a part is produced, it is evaluated for quality assurance.

Two testing methods for quality control are:

• Test 1 is used for parts that are produced from material 1.
• Test 2 is used for parts that are produced from material 2

After the production phase, parts are tagged based on their material to apply the correct test.

For more information, see “Create a Custom Resource Acquirer Block”.
classdef CustomBlockAcquireResources < matlab.DiscreteEventSystem
 % Custom resource acquire block example.

 methods(Access = protected)

 function num = getNumInputsImpl(obj)
 num = 1;
 end

 function num = getNumOutputsImpl(obj)
 num = 1;
 end

 function entityTypes = getEntityTypesImpl(obj)
 entityTypes(1) = obj.entityType('Part');
 end

 function [input, output] = getEntityPortsImpl(obj)
 input = {'Part'};
 output = {'Part'};
 end

 function [storageSpec, I, O] = getEntityStorageImpl(obj)
 storageSpec(1) = obj.queueFIFO('Part', 1);
 I = 1;

 resourceSpecification

1-91

 O = 1;
 end

 function resNames = getResourceNamesImpl(obj)
 % Define the names of the resources to be acquired.
 resNames = obj.resourceType('Part', {'Test1', 'Test2'}) ;
 end

 end

 methods

 function [entity,events] = entry(obj, storage, entity, source)
 % On entity entry, acquire a resource from the specified pool.
 if entity.data.Test == 1
 % If the entity is produced from Material1, request Test1.
 resReq = obj.resourceSpecification('Test1', 1);
 else
 % If the entity is produced from Material2, request Test2.
 resReq = obj.resourceSpecification('Test2', 1);
 end
 % Acquire the resource from the corresponding pool.
 events = obj.eventAcquireResource(resReq, 'TestTag');
 end

 function [entity,events] = resourceAcquired(obj, storage,...
 entity, resources, tag)
 % After the resource acquisition, forward the entity to the output.
 events = obj.eventForward('output', storage, 0.0);
 end

 end

end

Version History
Introduced in R2019a

See Also
matlab.DiscreteEventSystem | eventForward | cancelAcquireResource |
getResourceNamesImpl | resourceAcquired | eventReleaseResource |
eventAcquireResource

Topics
“Create a Custom Resource Acquirer Block”
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-92

resourceType
Class: matlab.DiscreteEventSystem
Package: matlab

Specify an entity type and the name of the resources to be acquired by the specified entity

Syntax
resType = resourceType(entityType,resourceNames)

Description
resType = resourceType(entityType,resourceNames) specifies an entity type and the
corresponding resources that this entity type acquires.

Input Arguments
entityType — Name of the entity
character vector

The entity type name used in a discrete-event system. For more information, see
getEntityTypesImpl.

resourceNames — Name of the resource the entity acquires
character vector

Array of resources from which the system intends to acquire resources for the defined entity type.

Output Arguments
resType — Resource Type
vector of MATLAB structures

Resource types returned as a vector.

Examples
Use this method together with getResourceNamesImpl to specify the resources of types Test1 and
Test2 to be acquired by the entity type Part.

function resNames = getResourceNamesImpl(obj)
 % Define the names of the resources to be acquired.
 resType = obj.resourceType('Part', {'Test1', 'Test2'}) ;
end

Version History
Introduced in R2019a

 resourceType

1-93

See Also
matlab.DiscreteEventSystem | eventForward | cancelAcquireResource |
getResourceNamesImpl | resourceAcquired | eventReleaseResource |
eventAcquireResource

Topics
“Create a Custom Resource Acquirer Block”
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-94

setupEvents
Class: matlab.DiscreteEventSystem
Package: matlab

Initialize entity generation events

Syntax
events=setupEvents(obj)
[events,out1,...]=setupEvents(obj)

Description
events=setupEvents(obj) sets up the first set of entity generation events at the start of
simulation.

[events,out1,...]=setupEvents(obj) specifies such event actions of the object when the block
has one or more signal output ports.

Input Arguments
obj — Discrete-event System object
MATLAB object

Discrete-event System object.

Output Arguments
events — Events
vector of MATLAB structures

A vector of events to create initial entities. The discrete-event system schedules these events at the
start of simulation.

out1 — Data output
any value

Data outputs of the object. You must specify these output arguments when the object has data
outputs.

Examples

Schedule Two Entity Generation Events

Schedules two entity generation events at the start of the simulation

function events = setupEvents(obj)
 % Schedules two entity generation events at the start of the

 setupEvents

1-95

 % simulation
 % - An event with tag 'Adam' to generate an entity in storage element 1.
 % - An event with tag 'Eve' to generate an entity in storage element 2.
 events = [...
 obj.eventGenerate(1, 'Adam', 0.5, 200), ...
 obj.eventGenerate(2, 'Eve', 0.8, 100)];
end

Version History
Introduced in R2016a

See Also
matlab.DiscreteEventSystem | blocked | entry | exit | generate | iterate | timer

Topics
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-96

testEntry
Class: matlab.DiscreteEventSystem
Package: matlab

Event action to accept or refuse entity

Syntax
accept = testEntry(obj,storage,entity,source,in1,...)

Description
accept = testEntry(obj,storage,entity,source,in1,...) specifies if the storage can
accept entity.

Input Arguments
obj — Discrete-event System object
MATLAB object

Discrete-event System object.

storage — Storage
double

Index of the storage element.

entity — Entity
MATLAB structure

Entity entering storage component. Entity has these fields:

• sys (MATLAB structure) — It has these fields:

• id (double) — Entity ID
• priority (double) — Entity priority

• data — Entity data

source — Source location
double

Source location of entity, such as an input port or a storage element. It has these fields:

• type (character vector) — Specify input or storage
• index (double) — Input or storage index

in1 — Signal input
any value

Any data inputs of the object. These input arguments exist only when the object has data inputs.

 testEntry

1-97

Output Arguments
accept — Accept or Refuse
boolean

Storage accepts entity if true. Otherwise, if false, it does not accept the entity.

Examples

Event Action to Accept or Refuse Entity

Accept or refuse an entity entering the storage.

function bool = testEntry(obj,storage,entity,src)
 % Test if entity is accepted
 bool = obj.isEntityAcceptable(obj, entity);
 end

Version History
Introduced in R2018a

See Also
matlab.DiscreteEventSystem | iterate

Topics
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-98

timer
Class: matlab.DiscreteEventSystem
Package: matlab

Event action when timer completes

Syntax
[entity,events]=timer(obj,storage,entity,tag)
[entity,events,out1,...]=timer(obj,storage,entity,tag,in1,...)

Description
[entity,events]=timer(obj,storage,entity,tag) specifies event actions for when
scheduled timer completes.

[entity,events,out1,...]=timer(obj,storage,entity,tag,in1,...) specifies such event
actions when the block has one or more input signal ports and/or signal output ports.

Input Arguments
obj — Discrete-event System object
MATLAB object

Discrete-event System object.

storage — Storage
double

Index of the storage element.

entity — Entity
MATLAB structure

Entity for the timer event. Entity has these fields:

• sys (MATLAB structure) — It has these fields:

• id (double) — Entity ID
• priority (double) — Entity priority

• data — Entity data

tag — Tag
character vector

Tag of the currently executing timer event.

in1 — Signal input
any value

 timer

1-99

Any data inputs of the object. These input arguments exist only when the object has data inputs.

Output Arguments
entity — Entity
MATLAB structure

Entity with changed value.

events — Events
vector of MATLAB structures

Events to be scheduled after the method returns. Use matlab.DiscreteEventSystem class
methods to create events. Each event has these fields:

• type (character vector) — Type of the event
• delay (double) — Delay before the event
• priority (double) — Priority of the event
• Storage (double) — Index of the storage element
• tag (character vector) — Event tag
• location (MATLAB structure) — Source or destination location of entity

out1 — Signal output
any value

Data outputs of the object. You must specify these output arguments when the object has data
outputs.

Examples
Event Action When Timer Completes

Forward entity when timer completes for discrete-event system object obj.

function [entity,events] = timer(obj,storage,entity,tag)
 % Check which timer of the entity has expired, and forward the
 % entity to the next location accordingly.
 switch tag
 case 'ServiceComplete'
 entity.done = 1;
 events = obj.eventForward('output', 1, 0);
 case 'Timeout'
 entity.done = 0;
 events = obj.eventForward('storage', 2, 0);
 end
end

Custom Entity Storage Block with Timer Events

This example uses a custom entity storage block with one input, two outputs, and a storage element.
An entity of type Part with TimeOut attribute enters the storage of the custom block to be
processed. TimeOut determines the maximum allowed processing time of the parts. When a part
enters the storage, two timer events are activated. One timer tracks the processing time of the part in

1 Functions

1-100

the oven. When this timer expires, the entity is forwarded to output 1. Another timer acts as a fail-
safe and tracks if the maximum allowed processing time is exceeded or not. When this timer expires,
the process is terminated and the entity is forwarded to the output 2.

For more information, see “Custom Entity Storage Block with Multiple Timer Events”.
classdef CustomEntityStorageBlockTimer < matlab.DiscreteEventSystem

 % A custom entity storage block with one input port, two output ports, and one storage.

 % Nontunable properties
 properties (Nontunable)
 % Capacity
 Capacity = 1;
 end

 methods (Access=protected)

 function num = getNumInputsImpl(~)
 num = 1;
 end

 function num = getNumOutputsImpl(~)
 num = 2;
 end

 function entityTypes = getEntityTypesImpl(obj)
 entityTypes = obj.entityType('Part');
 end

 function [inputTypes,outputTypes] = getEntityPortsImpl(obj)
 inputTypes = {'Part'};
 outputTypes = {'Part' 'Part'};
 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = obj.queueFIFO('Part', obj.Capacity);
 I = 1;
 O = [1 1];
 end

 end

 methods

 function [entity,event] = PartEntry(obj,storage,entity,source)
 % Specify event actions when entity enters storage.
 ProcessingTime=randi([1 15]);
 event1 = obj.eventTimer('TimeOut', entity.data.TimeOut);
 event2 = obj.eventTimer('ProcessComplete', ProcessingTime);
 event = [event1 event2];
 end

 function [entity, event] = timer(obj,storage,entity,tag)
 % Specify event actions for when scheduled timer completes.
 event = obj.initEventArray;
 switch tag
 case 'ProcessComplete'
 event = obj.eventForward('output', 1, 0);
 case 'TimeOut'
 event = obj.eventForward('output', 2, 0);
 end

 end

 end

end

Version History
Introduced in R2016a

 timer

1-101

See Also
matlab.DiscreteEventSystem | blocked | destroy | entry | exit | generate |
getEntityTypesImpl | iterate | setupEvents

Topics
“Custom Entity Storage Block with Multiple Timer Events”
“Create Custom Blocks Using MATLAB Discrete-Event System Block”

1 Functions

1-102

simevents
Open SimEvents library

Syntax
simevents

Description
simevents opens the main SimEvents library.

SimEvents integrates discrete-event system modeling into the Simulink® time-based framework. In
time-based systems, a signal changes value in response to the simulation clock, and state updates
occur synchronously with time. In discrete-event or event-based systems, state transitions depend on
asynchronous discrete incidents called events.

SimEvents provides a discrete-event simulation engine and component library for analyzing event-
driven system models and optimizing performance characteristics such as latency, throughput, and
packet loss. Queues, servers, switches, and other predefined blocks enable you to model routing,
processing delays, and prioritization for scheduling and communication.

In SimEvents:

• Entity — A discrete item or object of interest based on the application domain. For example an
entity can represent vehicles arriving at a gas station, messages within a communication network,
planes on a runway, or trains within a signaling system.

• Event — Asynchronous discrete incidents. For example, an event can represent an entity entry to
a block or entity departure from a block.

• Event Action — A custom action invoked by an event. You can customize event actions using
MATLAB code that performs calculations and Simulink function calls.

SimEvents blocks can produce, process, and route entities. The blocks can also attach data to entities
and manipulate entity data using event actions.

Examples

Create A Simple Queuing System

Open the SimEvents library and use the blocks from the library to build a queuing system that
generates entities, queues them in a specified order, services them to change their attributes, and
terminates them to represent their departure. For more information, see “A Simple Queuing System”.

 simevents

1-103

simevents;

Model an M/M/1 Queuing System

Open the SimEvents library and use the blocks to model a single-queue single-server system with a
single traffic source and an infinite storage capacity. In the notation, the M stands for Markovian;
M/M/1 means that the system has a Poisson arrival process, an exponential service time distribution,
and one server. Queuing theory provides exact theoretical results for some performance measures of
an M/M/1 queuing system and this model makes it easy to compare empirical results with the
corresponding theoretical results. For more information, see “M/M/1 Queuing System”.

simevents;

Version History
Introduced in R2011b

See Also
Entity Queue | Entity Server | Entity Generator | matlab.DiscreteEventSystem | entityType

Topics
“Create a Hybrid Model with Time-Based and Event-Based Components”
“Discrete-Event Simulation in Simulink Models”
“Create a Discrete-Event Model”
“M/M/1 Queuing System”

1 Functions

1-104

simeventslib
Open legacy SimEvents library

Syntax
simeventslib

Description
simeventslib opens the version 4.4.1 of the legacy SimEvents library.

Note This page is for the legacy library. To open the new SimEvents library that is introduced in
R2016a, see simevents.

Version History
Introduced before R2006a

See Also
simevents

Topics
“Migration Considerations”

 simeventslib

1-105

simevents.SimulationObserver class
Package: simevents
Superclasses: handle

Interface to create your custom observer for models with SimEvents blocks

Description
This class is an interface for creating custom observers for models with SimEvents blocks. Subclass
this class to create your own observer, using the methods below. Some utility functions are also
provided to interact with event calendars, blocks, and entities. Do not overwrite these utility
functions.

Class Attributes

Abstract false
HandleCompatible true
StrictDefaults false

For information on class attributes, see “Class Attributes”.

Creation
obj = SimulationObserver(modelName) returns an object of the SimulationObserver class,
used to create a model observer for a SimEvents model.

Input Arguments

modelName — Model to observe
character vector

The name of the model to observe.

Methods
Public Methods
simStarted Specify behavior when simulation starts
simPaused Specify behavior when simulation pauses
simResumed Specify behavior when simulation resumes
simTerminating Define observer behavior when simulation is terminating
getBlocksToNotify Specify list of blocks to be notified of entity entry and exit events
notifyEventCalendarEvents Specify whether you want notification for all events in event calendar
postEntry Specify behavior after an entity enters a block that has entity storage
preExit Specify behavior before an entity exits a block with entity storage
preExecute Specify behavior before execution of an event

Protected Methods
addBlockNotification Add block to list of blocks to be notified

1 Functions

1-106

removeBlockNotification Remove block from list of blocks being notified
getEventCalendars Get handles to event calendars
getAllBlockWithStorages Get list of blocks that store entities
getHandleToBlock Return block handle for a given block path
getHandlesToBlockStorages Return storage handles of specified block

Examples

Construct Animator

This example shows how to construct an animator.

function this = seExampleRestaurantAnimator
 % Constructor
 modelname = 'seExampleCustomVisualization';
 this@simevents.SimulationObserver(modelname);
 this.mModel = modelname;
 end

Create an observer to count entity departures and acquire departure timestamps

This example shows how to create a simulation observer object and use it to observe entities in a
model. For more information, see “Observe Entities Using simevents.SimulationObserver Class”.

Create the observer.
classdef myObserverPreexit < simevents.SimulationObserver
 % Add the observer properties.
 properties
 Model
 % Initialize the property count.
 count
 end
properties (Constant, Access=private)
 increment = 1;
end
methods
 % Observe any model by incorporating its name to MyObserverPreexit.
 function this = myObserverPreexit(Model)
 % Input model name to the simulation observer.
 this@simevents.SimulationObserver(Model);
 this.Model = Model;
 end
 % Initialize the count in the simulation start.
 function simStarted(this)
 this.count = 0;
 end
 % Specify list of blocks to be notified of entity entry and exit
 % events.
 function Block = getBlocksToNotify(this)
 Block = this.getAllBlockWithStorages();
 end
 function preExit(this,evSrc,Data)
 % Get the names of all storage blocks that the entities depart.
 % This returns the block with its path.
 Block = Data.Block.BlockPath;
 % Remove the path to display only the
 % block name.
 Block = regexprep(Block,'ObserverPreexitModel/' ,'');
 % Initialize the blocks to observe.
 BlockName = 'Entity Server';
 % If the block that entity exits contains the block name
 % acquire data for exit time and block name.
 if contains(Block, BlockName)
 % Get time for entity preexit from event calendar.

 simevents.SimulationObserver class

1-107

 evCal = this.getEventCalendars;
 Time = evCal(1).TimeNow;
 % Increase the count for departing entities.
 this.count = this.count + this.increment;
 myInfo = [' At time ',num2str(Time), ...
 ' an entity departs ', Block, ', Total entity count is ', ...
 num2str(this.count)];
 disp(myInfo);
 end
 end
 end
end

Save the file as myObserverPreexit.m.

Enable the observer object to monitor ObserverPreexitModel model.
obj = myObserverPreexit('ObserverPreexitModel');

Version History
Introduced in R2016a

See Also
simevents.SimulationObserver | addBlockNotification | getAllBlockWithStorages |
getBlocksToNotify

Topics
“Observe Entities Using simevents.SimulationObserver Class”

1 Functions

1-108

addBlockNotification
Class: simevents.SimulationObserver
Package: simevents

Add block to list of blocks to be notified

Syntax
addBlockNotification(obj,blkPath)

Description
addBlockNotification(obj,blkPath) is a utility function for adding a block to the list of blocks
to be notified. Specify the full path of the block to be added in blkPath.

Input Arguments
obj — SimulationObserver object
character vector

Object of class SimulationObserver

blkPath — Full path of the block to be notified
character vector

Full path of the block to be added to the list of blocks to be notified.

Examples

Add Block to List of Blocks for Notification

Add block to list of blocks for notification.

function postEntry(obj,eventSource,eventData)
 if someCondtionIsTrue
 addBlockNotification(obj,[this.mModel '/Patron Enter']);
 end
end

Version History
Introduced in R2016a

See Also
getAllBlockWithStorages | getBlocksToNotify | getEventCalendars | getHandleToBlock
| getHandlesToBlockStorages | notifyEventCalendarEvents | postEntry | preExecute |
preExit | removeBlockNotification | simPaused | simResumed | simStarted |
simTerminating

 addBlockNotification

1-109

Topics
“Use SimulationObserver Class to Monitor a SimEvents Model”

1 Functions

1-110

getAllBlockWithStorages
Class: simevents.SimulationObserver
Package: simevents

Get list of blocks that store entities

Syntax
getAllBlockWithStorages(obj)

Description
getAllBlockWithStorages(obj) is a utility function that returns the paths of all blocks that store
entities.

Input Arguments
obj — SimulationObserver object
character vector

Object of class SimulationObserver

Output Arguments
allBlkPaths — Paths of all blocks that store entities
cell array of character vectors

Cell array of all blocks that store entities, provided as full block paths.

Examples

Return Paths of All Blocks that Store Entities

Return the paths of all blocks that store entities.

function blks=getBlocksToNotify(obj)
 blks=getAllBlockWithStorages(obj);
end

Version History
Introduced in R2016a

See Also
addBlockNotification | getBlocksToNotify | getEventCalendars | getHandleToBlock |
getHandlesToBlockStorages | notifyEventCalendarEvents | postEntry | preExecute |

 getAllBlockWithStorages

1-111

preExit | removeBlockNotification | simPaused | simResumed | simStarted |
simTerminating

Topics
“Use SimulationObserver Class to Monitor a SimEvents Model”

1 Functions

1-112

getBlocksToNotify
Class: simevents.SimulationObserver
Package: simevents

Specify list of blocks to be notified of entity entry and exit events

Syntax
getBlocksToNotify(obj)

Description
getBlocksToNotify(obj) is used to specify a cell array of block paths that are notified by the
SimulationObserver object. These blocks have to be discrete event blocks with entity storages.
Override this function in your subclass to specify a cell array of blocks for which preExit and
postEntry methods will be called. Specify 'ALL' to run these methods on all the discrete-event
blocks with entity storages in the model. If you do not want any blocks to be notified, specify an
empty cell array, {}.

Input Arguments
obj — SimulationObserver object
character vector

Object of class SimulationObserver

Output Arguments
blks — List of blocks being notified of runtime events
{} (default) | cell array of character vectors

Cell array of full block paths of all blocks being notified of runtime events

Examples

Blocks to Observe in Model

Return the list of blocks you want to observe in the model.

function blks = getBlocksToNotify(this)
 % Return list of blocks to observe in the model
 %
 % For this example, we are only interested in the following
 % blocks as they are sufficient for us to know all events of
 % interest
 blks = { ...
 [this.mModel '/Patron Enter'], ...
 [this.mModel '/Have Dinner'], ...

 getBlocksToNotify

1-113

 [this.mModel '/Patron Leave'] ...
 };
 end

Version History
Introduced in R2016a

See Also
addBlockNotification | getAllBlockWithStorages | getEventCalendars |
getHandleToBlock | getHandlesToBlockStorages | notifyEventCalendarEvents |
postEntry | preExecute | preExit | removeBlockNotification | simPaused | simResumed |
simStarted | simTerminating

Topics
“Use SimulationObserver Class to Monitor a SimEvents Model”

1 Functions

1-114

getEventCalendars
Class: simevents.SimulationObserver
Package: simevents

Get handles to event calendars

Syntax
getEventCalendars(obj)

Description
getEventCalendars(obj) is a utility method that returns handles to all event calendars in your
model.

Input Arguments
obj — SimulationObserver object
character vector

Object of class SimulationObserver

Output Arguments
evCal — Array of event calendars in model
array of handles to EventCalendar objects

Array of handles to the event calendars in your model.

Examples

Get Handles to Event Calendars in Model

Get handles to all event calendars in your model.

function postEntry(obj,evSrc,evData)
 % Print simulation time
 evcal=getEventCalendars(obj);
 tNow=evcal(1).TimeNow;
 disp(tNow);
end

Version History
Introduced in R2016a

 getEventCalendars

1-115

See Also
addBlockNotification | getAllBlockWithStorages | getBlocksToNotify |
getHandleToBlock | getHandlesToBlockStorages | notifyEventCalendarEvents |
postEntry | preExecute | preExit | removeBlockNotification | simPaused | simResumed |
simStarted | simTerminating

Topics
“Use SimulationObserver Class to Monitor a SimEvents Model”

1 Functions

1-116

getHandlesToBlockStorages
Class: simevents.SimulationObserver
Package: simevents

Return storage handles of specified block

Syntax
getHandlesToBlockStorages(obj,blkPath)

Description
getHandlesToBlockStorages(obj,blkPath) returns the storage handles for the block specified
by blkPath. If the block does not store entities, this method returns a 0x0 array of
simevents.Storage objects.

Input Arguments
obj — SimulationObserver object
character vector

Object of class SimulationObserver

blkPath — Full path to block
character vector

Full path to the block that stores entities

Output Arguments
storagesForBlock — Storage handles for the block
array of handles to simevents.Storage objects

Array of storage handles of the block. If the block does not store entities, output is a 0x0 array of
storage.

Examples

Get Handles for All Block Storage Elements

Get handles for all block storage elements in the model.

function postEntry(obj,evSrc,evData)
 % Number of entities in server;
 storage=getHandlesToBlockStorages(obj,[this.mModel '/Have Dinner']);

 getHandlesToBlockStorages

1-117

 disp(length(storage.Entity));
end

Version History
Introduced in R2016a

See Also
addBlockNotification | getAllBlockWithStorages | getBlocksToNotify |
getEventCalendars | getHandleToBlock | notifyEventCalendarEvents | postEntry |
preExecute | preExit | removeBlockNotification | simPaused | simResumed | simStarted |
simTerminating

Topics
“Use SimulationObserver Class to Monitor a SimEvents Model”

1 Functions

1-118

getHandleToBlock
Class: simevents.SimulationObserver
Package: simevents

Return block handle for a given block path

Syntax
getHandleToBlock(obj,blkPath)

Description
getHandleToBlock(obj,blkPath) is a utility function that returns the handle to the block whose
full path is specified by blkPath.

Input Arguments
obj — SimulationObserver object
character vector

Object of class SimulationObserver

blkPath — Full path to block
character vector

Output Arguments
blkHandle — Handle to block
handle to block

Handle to the block specified in blkPath.

Examples

Return Handle to Specified Block

Return handle to specified block.

function postEntry(obj,evSrc,evData)
 hdl=getHandleToBlock(obj,[this.mModel '/Have Dinner']);
 ...
end

Version History
Introduced in R2016a

 getHandleToBlock

1-119

See Also
addBlockNotification | getAllBlockWithStorages | getBlocksToNotify |
getEventCalendars | getHandlesToBlockStorages | notifyEventCalendarEvents |
postEntry | preExecute | preExit | removeBlockNotification | simPaused | simResumed |
simStarted | simTerminating

Topics
“Use SimulationObserver Class to Monitor a SimEvents Model”

1 Functions

1-120

notifyEventCalendarEvents
Class: simevents.SimulationObserver
Package: simevents

Specify whether you want notification for all events in event calendar

Syntax
notifyEventCalendarEvents(obj)

Description
notifyEventCalendarEvents(obj) is specifies whether you want notification for all events in the
event calendar before they are executed. Set the output of this method to true to call the
preExecute method for all events in the event calendar.

Input Arguments
obj — SimulationObserver object
character vector

Object of class SimulationObserver

Output Arguments
n — Boolean specifying whether all events in event calendar are notified before executing
false (default) | true

Boolean that specifies whether you are notified of all events in the event calendar before executing. If
set to true, the preExecute method is called for every event before its execution.

Examples

Specify Notification for All Events in Event Calendar

Specify whether you want notification for all events in event calendar.
function status=notifyEventCalendarEvents(obj)
 status=false;
end

Version History
Introduced in R2016a

See Also
addBlockNotification | getAllBlockWithStorages | getBlocksToNotify |
getEventCalendars | getHandleToBlock | getHandlesToBlockStorages | postEntry |

 notifyEventCalendarEvents

1-121

preExecute | preExit | removeBlockNotification | simPaused | simResumed | simStarted |
simTerminating

Topics
“Use SimulationObserver Class to Monitor a SimEvents Model”

1 Functions

1-122

postEntry
Class: simevents.SimulationObserver
Package: simevents

Specify behavior after an entity enters a block that has entity storage

Syntax
postEntry(obj,evSrc,evData)

Description
postEntry(obj,evSrc,evData) is used to specify behavior after an entity enters a block that has
entity storage. The simulation observer uses this method as a callback for post-entry event
notification and provides handles to the entity, the block and its storage, and the event.

Input Arguments
obj — SimulationObserver object
character vector

Object of class SimulationObserver

evSrc — Handle to block storage
handle to simevents.Storage object

Handle to block storage in which the entity entered. The handle will be populated by the simulation
observer.

evData — List of handles for block, storage, and entities, and event type
cell array of handles

List of handles for block, storage, and entities. The list will be populated by the simulation observer.

Examples

Specify Listener for Storage Entry

Specify listener to execute when entity enters a storage element such as a queue or server.

function postEntry(this, evSrc, evData)
 % Override to specify listener for entry into a storage (queue/server)

 entity = evData.CurrentEntity;

 if strcmp(evData.Block.BlockPath, [this.mModel '/Have Dinner'])

 % Identify which table the customer is going to
 tblId = this.occupyTable(entity);

 postEntry

1-123

 % Schedule motion for this customer to the appropriate
 % table
 target = this.cTablePos(tblId, :);
 this.scheduleMotion(entity, target);

 % Decrement the waiting statistic
 this.updateStats(this.mTxtWaiting, this.DECREMENT);

 elseif strcmp(evData.Block.BlockPath, [this.mModel '/Patron Leave'])
 % Schedule motion for this entity from its current position
 % to the exit position
 if isKey(this.mEntityGlyphs, num2str(entity.ID))
 this.scheduleMotion(entity, this.cExitPos);
 end

 % Schedule for the entity dot to be destroyed when it has
 % completed its pending motion
 this.scheduleMotion(entity, [NaN, NaN]);

 end
 end

Version History
Introduced in R2016a

See Also
addBlockNotification | getAllBlockWithStorages | getBlocksToNotify |
getEventCalendars | getHandleToBlock | getHandlesToBlockStorages |
notifyEventCalendarEvents | preExecute | preExit | removeBlockNotification |
simPaused | simResumed | simStarted | simTerminating

Topics
“Use SimulationObserver Class to Monitor a SimEvents Model”

1 Functions

1-124

preExecute
Class: simevents.SimulationObserver
Package: simevents

Specify behavior before execution of an event

Syntax
preExecute(obj,evSrc,evData)

Description
preExecute(obj,evSrc,evData) is used to specify behavior before the execution of an event in
the event calendar. The simulation observer uses this method as a callback for pre-execute event
notifications and provides a handle to the event calendar.

Input Arguments
obj — SimulationObserver object
character vector

Object of class SimulationObserver

evSrc — Handle to event calendar
handle to simevents.EventCalendar object

Handle to event calendar. The handle will be populated by the simulation observer.

evData — Event name and handle to event calendar
cell array of handles

Event name and handle to event calendar

Examples

Specify Behavior Before Execution of Event

Specify behavior before the execution of an event in the event calendar.

function preExecute(obj,evSrc,evData)
 fprintf('Specify behavior before the execution of an event in the event calendar.');
end

Version History
Introduced in R2016a

 preExecute

1-125

See Also
addBlockNotification | getAllBlockWithStorages | getBlocksToNotify |
getEventCalendars | getHandleToBlock | getHandlesToBlockStorages |
notifyEventCalendarEvents | postEntry | preExit | removeBlockNotification |
simPaused | simResumed | simStarted | simTerminating

Topics
“Use SimulationObserver Class to Monitor a SimEvents Model”

1 Functions

1-126

preExit
Class: simevents.SimulationObserver
Package: simevents

Specify behavior before an entity exits a block with entity storage

Syntax
preExit(obj,evSrc,evData)

Description
preExit(obj,evSrc,evData) is used to specify behavior before an entity exits a block that stores
entities. The simulation observer uses this method as a callback for pre-exit event notification and
provides handles to the entity, the block and its storage, and the event.

Input Arguments
obj — SimulationObserver object
character vector

Object of class SimulationObserver

evSrc — Handle to event calendar
handle to simevents.EventCalendar object

Handle to event calendar. The handle will be populated by the simulation observer.

evData — List of handles of block, storage, and entities, and event type
cell array of handles

List of handles of block, storage, and entities. The list will be populated by the simulation observer.

Examples

Specify Listener for Storage Exit

Specify listener to execute when entity exits a storage element such as a queue or server.

function preExit(this, ~, evData)
 % Override to specify listener for exit from a storage (queue/server)
 % evData contains block, storage, and entity handles

 entity = evData.CurrentEntity;

 if strcmp(evData.Block.BlockPath, [this.mModel '/Patron Enter'])
 % Create a new "dot" on the figure at the entry position
 h = plot(this.cEntryPos(1), this.cEntryPos(2), '.');
 set(h, 'MarkerSize', 32);

 preExit

1-127

 % Add a mouse-click function to the dot so we can retrieve
 % attribute data when user clicks on this customer
 set(h, 'ButtonDownFcn', @(h,e)entityClickFcn(this,h,e));

 % Cache away the entity identifier on this dot
 set(h, 'Tag', num2str(entity.ID));

 % Cache away this dot handle so that we can move it in
 % future events
 this.mEntityGlyphs(num2str(entity.ID)) = h;

 % Cache away the entity handle
 this.mEntities(num2str(entity.ID)) = entity;

 % Increment the entry statistics
 this.updateStats(this.mTxtEntry, this.INCREMENT);

 % Schedule motion for this entity from its current position
 % to a random position in the waiting area
 this.scheduleMotion(entity, this.getRandWaitingPos());

 % Increment waiting statistic
 this.updateStats(this.mTxtWaiting, this.INCREMENT);
 elseif strcmp(evData.Block.BlockPath, [this.mModel '/Have Dinner'])
 this.releaseTable(entity);
 end
 end

 end

Version History
Introduced in R2016a

See Also
addBlockNotification | getAllBlockWithStorages | getBlocksToNotify |
getEventCalendars | getHandleToBlock | getHandlesToBlockStorages |
notifyEventCalendarEvents | postEntry | preExecute | removeBlockNotification |
simPaused | simResumed | simStarted | simTerminating

Topics
“Use SimulationObserver Class to Monitor a SimEvents Model”

1 Functions

1-128

removeBlockNotification
Class: simevents.SimulationObserver
Package: simevents

Remove block from list of blocks being notified

Syntax
removeBlockNotification(obj,blkPath)

Description
removeBlockNotification(obj,blkPath) is a utility function used to remove a block from the
list of blocks being notified. Specify the full path of the block to be added in blkPath.

Input Arguments
obj — SimulationObserver object
character vector

Object of class SimulationObserver

blkPath — Full path of the block to be notified
character vector

Full path of the block to be added to the list of blocks being notified.

Examples

Remove Block

Remove block from list of blocks being notified.

function postEntry(obj,eventSource,eventData)
 if someCondtionIsTrue
 removeBlockNotification(obj,[this.mModel '/Patron Enter']);
 end
end

Version History
Introduced in R2016a

See Also
addBlockNotification | getAllBlockWithStorages | getBlocksToNotify |
getEventCalendars | getHandleToBlock | getHandlesToBlockStorages |
notifyEventCalendarEvents | postEntry | preExecute | preExit | simPaused | simResumed
| simStarted | simTerminating

 removeBlockNotification

1-129

Topics
“Use SimulationObserver Class to Monitor a SimEvents Model”

1 Functions

1-130

simPaused
Class: simevents.SimulationObserver
Package: simevents

Specify behavior when simulation pauses

Syntax
simPaused(obj)

Description
simPaused(obj) determines the behavior when the simulation is paused. Override this function to
specify the behavior of your visualization when the simulation pauses, as determined by the
SimulationStatus parameter.

Input Arguments
obj — SimulationObserver object
character vector

Object of class SimulationObserver

Examples

Call Method When Pausing Model

Call this method when model is paused.

function simPaused(this)
 % Called when model is paused

 % Schedule the timer to stop when all pending animation is
 % completed
 this.mTimerRequestPause = true;
 end

Version History
Introduced in R2016a

See Also
addBlockNotification | getAllBlockWithStorages | getBlocksToNotify |
getEventCalendars | getHandleToBlock | getHandlesToBlockStorages |
notifyEventCalendarEvents | postEntry | preExecute | preExit |
removeBlockNotification | simResumed | simStarted | simTerminating

 simPaused

1-131

Topics
“Use SimulationObserver Class to Monitor a SimEvents Model”

1 Functions

1-132

simResumed
Class: simevents.SimulationObserver
Package: simevents

Specify behavior when simulation resumes

Syntax
simResumed(obj)

Description
simResumed(obj) determines the behavior when the simulation resumes after pausing. Override
this function to specify the behavior of your visualization when the simulation resumes, as determined
by the SimulationStatus parameter.

Input Arguments
obj — SimulationObserver object
character vector

Object of class SimulationObserver

Examples

Call Method When Model Continues

Call this method when model continues after pausing.

function simResumed(this)
 % Called when model continues from being paused

 % Restart the timer
 this.mTimerRequestPause = false;
 start(this.mTimer);
 end

Version History
Introduced in R2016a

See Also
addBlockNotification | getAllBlockWithStorages | getBlocksToNotify |
getEventCalendars | getHandleToBlock | getHandlesToBlockStorages |
notifyEventCalendarEvents | postEntry | preExecute | preExit |
removeBlockNotification | simPaused | simStarted | simTerminating

 simResumed

1-133

Topics
“Use SimulationObserver Class to Monitor a SimEvents Model”

1 Functions

1-134

simStarted
Class: simevents.SimulationObserver
Package: simevents

Specify behavior when simulation starts

Syntax
simStarted(obj)

Description
simStarted(obj) determines the behavior when the simulation starts. Override this function to
specify the behavior of your visualization when the simulation starts, as determined by the
SimulationStatus parameter.

Input Arguments
obj — SimulationObserver object
character vector

Object of class SimulationObserver

Examples

Initialize Animation Canvas

Initialize the animation canvas.
function simStarted(this)
 % Initialize the animation canvas

 % Re-initialize runtime work variables for simulation
 this.mEntityGlyphs = containers.Map('keytype', 'char', 'valuetype', 'any');
 this.mEntities = containers.Map('keytype', 'char', 'valuetype', 'any');
 this.mCombineMap = containers.Map('keytype', 'char', 'valuetype', 'char');
 this.mCachePostRun = containers.Map('keytype', 'char', 'valuetype', 'char');
 this.mTableOccupy = zeros(1, size(this.cTablePos,1)) - 1;

 % Setup the figure with the restaurant floor as background
 close all;
 im = imread('restaurant.png');
 image(im);
 this.mFig = gcf;
 set(this.mFig, 'Tag', 'Begin');
 this.mAx = gca;
 set(this.mFig, 'toolbar', 'none');
 set(this.mFig, 'menubar', 'none');
 set(this.mAx, 'XTickLabel', '');
 set(this.mAx, 'YTickLabel', '');
 set(this.mAx, 'Box', 'on');
 set(this.mAx, 'TickLength', [0 0]);
 set(this.mAx, 'position', [0 0 1 1]);
 hold on;

 % Set up the numeric statistics text labels on the figure
 this.mTxtEntry = text(170,850, '0');
 this.mTxtWaiting = text(10,160, '0');

 simStarted

1-135

 this.mTxtExit = text(920,330, '0');
 this.mTxtSelectedEnt = text(50,600,'');

 set(this.mTxtEntry, 'Color', [0.8500 0.3250 0.0980], 'FontWeight', 'bold', 'FontSize', 14);
 set(this.mTxtWaiting, 'Color', [0.8500 0.3250 0.0980], 'FontWeight', 'bold', 'FontSize', 14);
 set(this.mTxtExit, 'Color', [0.8500 0.3250 0.0980], 'FontWeight', 'bold', 'FontSize', 14);

 this.mLineSelectedEnt = plot(0,0,'.');

 % Set up the timer
 this.mTimer = timer(...
 'TimerFcn', @(t,e)animate(this,t,e), ...
 'ExecutionMode', 'fixedSpacing', ...
 'Period', this.cTimerPeriod);
 this.mTimerData = containers.Map('keytype', 'char', 'valuetype', 'any');
 this.mTimerRequestStop = false;
 this.mTimerRequestPause = false;
 start(this.mTimer);
 end

Version History
Introduced in R2016a

See Also
addBlockNotification | getAllBlockWithStorages | getBlocksToNotify |
getEventCalendars | getHandleToBlock | getHandlesToBlockStorages |
notifyEventCalendarEvents | postEntry | preExecute | preExit |
removeBlockNotification | simPaused | simResumed | simTerminating

Topics
“Use SimulationObserver Class to Monitor a SimEvents Model”

1 Functions

1-136

simTerminating
Class: simevents.SimulationObserver
Package: simevents

Define observer behavior when simulation is terminating

Syntax
simTerminating(obj)

Description
simTerminating(obj) determines the behavior when the simulation is terminating. Override this
function to specify the behavior of your visualization when the simulation is terminating, as
determined by the SimulationStatus parameter.

Input Arguments
obj — SimulationObserver object
character vector

Object of class SimulationObserver

Examples

Call Method When Simulation is Terminating

Call this method when simulation is terminating.

function simTerminating(this)
 % Called when simulation is terminating
 %
 % After the simulation terminates, in order to support clicking
 % on entity to see attributes, we gather up all of the entities
 % that exist in the model and save their attribute information

 ents = this.mEntityGlyphs.keys;
 for idx = 1 : length(ents)
 ent = ents{idx};
 try
 enStruct = this.mEntities(ent);
 str = evalc('disp(enStruct.Attributes)');
 this.mCachePostRun(ent) = str;
 catch me
 end
 end

 % If animation timer is still running, schedule a stop
 if strcmp(this.mTimer.Running, 'on')
 this.mTimerRequestStop = true;

 simTerminating

1-137

 else
 % If timer is not running, delete it
 delete(this.mTimer);
 end
 end

Version History
Introduced in R2016a

See Also
addBlockNotification | getAllBlockWithStorages | getBlocksToNotify |
getEventCalendars | getHandleToBlock | getHandlesToBlockStorages |
notifyEventCalendarEvents | postEntry | preExecute | preExit |
removeBlockNotification | simPaused | simResumed | simStarted

Topics
“Use SimulationObserver Class to Monitor a SimEvents Model”

1 Functions

1-138

Blocks

2

Composite Entity Creator
Create composite entities
Library: SimEvents

Description
The Composite Entity Creator block creates a composite entity for each set of entities arriving
simultaneously at all input ports. The newly created entity can include information about the
structure, attributes, and timers of the arriving entities.

You can combine entities from different paths using this block. The combined entity represents
different parts within a larger item, such as the header, payload, and trailer that are parts of a data
packet. Alternatively, you can model resource allocation by combining an entity that represents a
resource with an entity that represents a part or other item.

The Composite Entity Creator block detects when all necessary component entities are present and
when the composite entity that results from the combining operation will be able to advance to the
next block. You can also configure the Composite Entity Creator block to make the combining
operation reversible via the Composite Entity Splitter block.

Ports
Input

port_1 — Input entity
scalar | vector | matrix

Input entity port for entities entering the block.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean |
enumerated | bus | fixed point

port_2 — Input entity
scalar | vector | matrix

Input entity port for entities entering the block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Output

port_1 — Output composite entity
scalar | vector | matrix

Output entity port for composite entities exiting the clock.

2 Blocks

2-2

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Parameters
Number of input ports — Specify the number of input ports
2 (default) | scalar

Specify the number of input ports to create the composite entity.

Programmatic Use
Block Parameter: NumberInputPorts
Type: character vector
Values: '2' | scalar
Default: '2'

Entity type name — Specify the type name of the composite entity
Combined (default) | character vector

Specify the type name of the composite entity that is created after combining incoming entities.

Programmatic Use
Block Parameter: EntityTypeName
Type: character vector
Values: 'Combined' | character vector
Default: 'Combined'

Bus object — Specify the output
off (default) | on

Specify whether to output the composite entity as a bus object.

Programmatic Use
Block Parameter: BusObject
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Define input entity names — Specify the names of the input entities used to generate
the composite entity
{E1, E2} (default) | character vector

Names of the entities in the composite entity.

Programmatic Use
Block Parameter: InputEntityName
Type: character vector
Values: 'E1|E2' | character vector
Default: 'E1|E2'

 Composite Entity Creator

2-3

Version History
Introduced in R2016a

See Also
Entity Queue | Entity Gate | Entity Generator | Composite Entity Splitter | Entity Input Switch | Entity
Output Switch | Entity Server | Entity Terminator | Resource Acquirer | Resource Releaser | Resource
Pool

2 Blocks

2-4

Composite Entity Splitter
Split composite entities
Library: SimEvents

Description
The Composite Entity Splitter block splits a composite entity into its individual entities and outputs
them through each unblocked entity output port. A composite entity can be the output of the
Composite Entity Creator block, a structured type or a bus type entity from Entity Generator or
Message Send blocks.

Ports
Input

port_1 — Input composite entity
scalar | vector | matrix

Input entity port for composite entities entering the block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Output

port_1 — Output entity
scalar | vector | matrix

Output port for entities exiting the block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

port_2 — Output entity
scalar | vector | matrix

Output port for entities exiting the block.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean |
enumerated | bus | fixed point

Parameters
Number of output ports — Specify the number of output ports
2 (default) | scalar

 Composite Entity Splitter

2-5

Specify the number of output ports to output entities.

Programmatic Use
Block Parameter: NumberOutputPorts
Type: character vector
Values: '2' | scalar
Default: '2'

Version History
Introduced in R2016a

See Also
Entity Generator | Composite Entity Creator

Topics
“SimEvents Common Design Patterns”

2 Blocks

2-6

Conveyor System
Transport entities
Library: SimEvents

Description
The Conveyor System block transports entities across the surface of a conveyor. Entities enter the
block by sliding onto the conveyor surface and they depart the block by sliding off. You can specify
the speed of the conveyor. If the conveyor speed is variable, a second input port appears on the block
to accept anonymous entities that carry data for specifying the new conveyor speed. Use this block to
model transportation applications involving production systems, or logistical systems.

In the Conveyor System block:

• You can specify the speed and the surface length of the conveyor. You can specify the length and
the minimum distance between the transported entities.

• Entities slide into the conveyor surface and an entity is considered as inside the conveyor surface
when its front side coincides with the surface entry.

• Entities slide out of the conveyor surface and an entity is considered as outside the conveyor
surface when its back side coincides with the surface entry.

• Conveyor speed determines the total time between an entity entry to the surface and its exit from
the surface.

Entity can enter and exit the conveyor surface provided that:

 Conveyor System

2-7

• There are no other entities blocking the entity when the Blocked output behavior is set to
Accumulate.

• The conveyor surface is not paused when the Blocked output behavior is set to Pause. For
more information, see “Blocked output behavior” on page 2-0 .

For instance, suppose that the conveyor length is 10, entity length is 1, and conveyor speed is 5.
Then, it takes 2.2 simulation time for the entity to depart the surface. 10/5 = 2 to travel
through the surface and 1/5 = 0.2 to depart from the surface because its length is 1.

• After an entity enters the conveyor surface, the next entity enters after the first one travels to the
specified minimum distance between entities.

• The capacity of the conveyor system is the maximum number of entities allowed on the surface.
The capacity is determined by the total surface length, entity length, and the minimum distance
between entities.

For example, suppose that the entity length is 1 meter, conveyor system surface length is 100
meters, and the distance between entities is 15 meters. The capacity of the conveyor system
becomes 6 entities.

• When using the Conveyor length, Conveyor speed, Minimum distance between entities, and
Entity length value parameters ensure that the values are consistent with each other.

For example, specify the entity length of 10 cm and a conveyor system of length 100 m to achieve
consistency:

• Set the Conveyor length parameter to 100.
• Set the Entity length parameter to 0.1.

2 Blocks

2-8

Ports
Input

Port_1 — Incoming entity
scalar | vector | matrix

Input entity port for entities entering the queue. Entities are not accepted by the block when the
speed of the conveyor is 0.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

S — Incoming anonymous entity
scalar

Input port for anonymous entities entering the block. The entity carries data that specifies the new
conveyor speed upon its arrival. The entity data must be a non-negative value between 0 and Inf.
The new speed applies to all entities in the block including the incoming and existing ones.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output

Port_1 — Exiting entity
scalar | vector | matrix

Output entity port for entities leaving the queue
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Port_d — Number of entities departed
off (default) | on

Selecting this check box outputs the number of entities that have exited the block.

Dependencies

To enable this port, select the Statistics > Number of entities departed, d check box.
Data Types: double

Port_n — Number of entities in block
off (default) | on

Selecting this check box outputs the number of entities in the block.

Dependencies

To enable this block, select the Statistics > Number of entities in block, n check box.
Data Types: double

Port_pe — Pending entity in block
off (default) | on

Selecting this check box outputs the value 1 for a pending entity in the block, and 0 otherwise.

 Conveyor System

2-9

Dependencies

To enable this port, select the Statistics > Pending entity in block, pe.
Data Types: double

Port_s — Conveyor speed
off (default) | on

Selecting this check box outputs the conveyor speed.

Dependencies

To enable this port, select the Statistics > Conveyor speed, s.
Data Types: double

Parameters
Conveyor length — Length of surface
100 (default) | numeric

Length of surface that entities travel on. For more information, see “Description” on page 2-7.

Programmatic Use
Block Parameter: mConveyorLength
Type: character vector
Values: '100' | scalar
Default: '100'

Conveyor speed — Speed of the conveyor surface
1000 (default) | numeric

Speed of surface that entities travel on. The speed can take values greater than 0 and its value can be
zero only when the Variable conveyor speed check box is selected. For more information, see
“Description” on page 2-7.

Programmatic Use
Block Parameter: mConveyorSpeed
Type: character vector
Values: '1000' | scalar
Default: '1000'

Minimum distance between entities — Minimum physical separation
0 (default) | numeric

Minimum physical separation entities maintain while moving across the conveyor system. For more
information, see “Description” on page 2-7.

Programmatic Use
Block Parameter: mMinDisBetEntity
Type: character vector
Values: '0' | scalar

2 Blocks

2-10

Default: '0'

Entity length source — Entity length source
Dialog (default) | Attribute

Provide entity length, selected from the drop-down list.

Dependencies

• Dialog — Selecting this option enables the Entity length value parameter.
• Attribute — Selecting this option enables the Entity length attribute name parameter.

Programmatic Use
Block Parameter: mEntityLengthSource
Type: character vector
Values: 'Dialog' | 'Attribute'
Default: 'Dialog'

Entity length value — Length of entities
1 (default) | numeric

Length of entities, specified as a numeric value. For more information, see “Description” on page 2-7.

Dependencies

To enable this parameter, select Dialog for Entity length source.

Programmatic Use
Block Parameter: mEntityLength
Type: character vector
Values: '1' | scalar
Default: '1'

Entity length attribute name — Name of entity length attribute
Length (default) | character vector

Name of entity length attribute, specified as a character vector.

Dependencies

To enable this parameter, select Attribute for Entity length source.

Programmatic Use
Block Parameter: mEntityLengthAttrName
Type: character vector
Values: 'Length' | character vector
Default: 'Length'

Blocked output behavior — Behavior when the output is blocked
Accumulate (default) | Pause | Error

Behavior when output is blocked, selected from drop-down list:

 Conveyor System

2-11

• Accumulate — Accumulate entities. In Accumulate mode, an entity continues to move on the
conveyor surface until its movement is blocked by another entity ahead.

For example, if one or more entities are extracted out of the conveyor surface by the Entity Find
block, entities that are behind the extracted entity continue to move forward until they occupy the
empty space due to the extraction.

• Pause — Pause conveyor system. In Pause mode, all entities on the conveyor surface stop and
move together. The conveyor surface stops moving when an entity at the exit is unable to depart.
During the pause, the conveyor system does not accept new entities.

• Error — Return an error. In Error mode, when an entity is blocked from entering the conveyor
surface the error is displayed.

Programmatic Use
Block Parameter: mOutputBlockedOpt
Type: character vector
Values: 'Accumulate' | 'Pause' | 'Error'
Default: 'Accumulate'

Error if conveyor full — Conveyor behavior when the maximum number of entities is
reached
on (default) | off

Conveyor behavior when the conveyor surface is full.

on
Return an error if the conveyor system is full.

off
Do not return an error if the conveyor system is full.

Programmatic Use
Block Parameter: mErrorUponFullOpt
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Variable conveyor speed — Constant or variable conveyor speed
off (default) | on

Specify if the conveyor system has constant or variable speed.

off
Constant speed conveyor system. You can specify the speed using the Conveyor speed
parameter.

on
Variable speed conveyor system. An input port appears to accept anonymous entities which carry
data to specify the new conveyor speed.

2 Blocks

2-12

Programmatic Use
Block Parameter: mIsVariableSpeed
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Number of entities departed, d — Number of entities departed
off (default) | on

Number of entities that have departed the block.

Programmatic Use
Block Parameter: mNumEntitiesDepOpt
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Number of entities in block, n — Number of existing entities
off (default) | on

Outputs the number of entities present in the block.

Programmatic Use
Block Parameter: mNumEntitiesInBlockOpt
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Pending entity in block, pe — Pending entities
off (default) | on

Indicates whether an entity that is yet to depart is present in the block. The value is 1 for a pending
entity, and 0 otherwise.

Programmatic Use
Block Parameter: mEntityPendingOpt
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Number of entities extracted, ex — Number of entities extracted from this block
off (default) | on

Outputs the number of extracted entities which are pulled out from this block by the Entity Find
block. When an entity is extracted, Number of entities departed, d,and Number of entities in
block, n statistics are updated accordingly. For more information about finding and extracting
entities, see “Find and Extract Entities in SimEvents Models”.

Programmatic Use
Block Parameter: mNumExtractedFromBlockOpt
Type: character vector

 Conveyor System

2-13

Values: 'on' | 'off'
Default: 'off'

Conveyor speed, s — Speed of the conveyor for the duration of the simulation
off (default) | on

Outputs the speed of the conveyor during the course of the simulation.

Programmatic Use
Block Parameter: mConveyorSpeedOpt
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Version History
Introduced in R2017b

See Also
MATLAB Discrete-Event System | MATLAB System | Entity Queue | Entity Server | Entity Store

Topics
“Overview of Queues and Servers in Discrete-Event Simulation”

2 Blocks

2-14

Discrete-Event Chart
Discrete event chart
Library: SimEvents

Description
The Discrete-Event Chart block is similar to a Stateflow® chart but is used for discrete events. The
block requires a Stateflow license.

The distinguishing characteristic of the Discrete-Event Chart block is that it executes in an event-
based rather than time-based fashion. The Discrete-Event Chart block provides these advantages for
discrete-event modeling:

• Precise timing — The time resolution for occurrence of events can be arbitrarily precise and is not
limited by the sample time of the model.

• Trigger on arrival — A Discrete-Event Chart block executes immediately on message arrival. It
does not wait for the next sample time hit.

• Variable execution order — A Discrete-Event Chart block does not have a fixed sorted execution
order. The order of execution depends on the run-time conditions of the model.

• Multiple executions per time step — A Discrete-Event Chart block can execute zero or multiple
times in a single time step.

The Discrete Event Chart can be used in a similar fashion to the Stateflow Chart (Stateflow).

To access the chart properties, right-click the chart and select Properties. For more information
about the block properties, see “Create Custom Queuing Systems Using Discrete-Event Stateflow
Charts”.

For information about SimEvents common design patterns with Discrete-Event Chart block, see
“SimEvents Common Design Patterns”.

Version History
Introduced in R2016a

See Also
Entity Generator | MATLAB Discrete-Event System

Topics
“Create Custom Queuing Systems Using Discrete-Event Stateflow Charts”
“SimEvents Common Design Patterns”

 Discrete-Event Chart

2-15

Entity Batch Creator
Create batch of entities
Library: SimEvents

Description
The Entity Batch Creator receives the expected number of entities and creates a batch entity that
contains all these entities. The batched entity is an array of entities. Any acquired resources have to
be released using a Resource Releaser block before batching an input entity.

To customize actions when entities enter, exit, or are batched or blocked, enter MATLAB code in the
Entry action, Exit action, Batch generate action, or Blocked action field of the Event
actions tab. For more information about event actions, see “Events and Event Actions”.

You can write MATLAB code to manipulate the attributes of the batched entity. For example, to access
attributes after an entity batch is generated, select Batch generate action and use the code.

entity.batch

If the number of entities in a batch is 4, then entity.batch is a 4-by-1 structure array. To
manipulate Attribute1 of the third entity in the batch enter the code.

entity.batch(3).Attribute1

You can reference batched entity attributes in event actions. You cannot reference them in:

• Priority queues — Do not set Priority source parameter to PriorityAttribute.
• Entity Server block — Do not set Service time source parameter to Attribute.
• Output Switch block — Do not set Switching criterion parameter to From attribute.

To output the batch as a bus object, select the Bus object parameter. Consider creating a bus object
for the batched entity when:

• Sending or receiving a batched entity to or from a MATLAB Discrete-Event System block.
• Sending or receiving a batched entity to or from a Discrete-Event Chart block.
• When passing full entity data to a Simulink Function block.
• When converting a batched entity to a signal using the Message Receive block.

Ports
Input

Port_1 — Input entity
scalar | vector | matrix

Input entity port for entities entering the block.

2 Blocks

2-16

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Output

Port_1 — Output batch entity
scalar | vector | matrix

Output entity port for batch entities exiting the block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Port_a — Number of entities arrived
scalar

Number of entities that have arrived at the block.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Number of entities arrived,
a.
Data Types: double

Port_d — Number of entities that have departed the block
scalar

Number of entities that have departed the block.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Number of entities
departed, d.
Data Types: double

Port_rem — Number of entities remaining for the next batch
scalar

Number of entities that remain for the next batch.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Number of entities
remaining for the next batch, rem.
Data Types: double

Port_pe — Pending entity in block
off (default) | on

Selecting this check box outputs 1 for a pending entity in the block, and 0 otherwise.

Dependencies

To enable this port, select the Statistics > Pending entity in block, pe.
Data Types: double

 Entity Batch Creator

2-17

Parameters
Number of entities in batch — Number of entities in one batch
4 (default) | scalar

Specify the number of entities in a batch.

Programmatic Use
Block Parameter: NumberOfEntitiesInBatch
Type: character vector
Values: '4' | scalar
Default: '4'

Entity type name — Name of the batched entity that is created after combining incoming
entities
Batch (default) | character vector

Specify the name of the batched entity that is created after combining incoming entities.

Programmatic Use
Block Parameter: EntityTypeName
Type: character vector
Values: 'Batch' | character vector
Default: 'Batch'

Bus object — Specify whether to output the batched entity as a bus object
off (default) | on

Specify whether to output the batched entity as a bus object.

Programmatic Use
Block Parameter: BusObject
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Input entity name — Specify names to be attached to the input entities
batch (default) | character vector

Specify names to be attached to the input entities, which can be used for referencing these entities in
the batched entity.

Programmatic Use
Block Parameter: InputEntityName
Type: character vector
Values: 'batch' | character vector
Default: 'batch'

Event actions — Specify the event action
Entry (default) | Batch generate | Exit | Blocked

2 Blocks

2-18

Specify the behavior of the entity on certain events. For example, the Entry action is called when the
entity enters the block. To customize actions when entities enter, exit, or are batched or blocked,
enter MATLAB code in the Entry action, Exit action, Batch generate action, or Blocked
action field of the Event actions tab. For more information about event actions, see “Events and
Event Actions”. For an example, see “Manage Entities Using Event Actions”
Programmatic Use
Block Parameter: EntryAction, BatchGenerateAction, ExitAction, BlockedAction
Type: character vector
Values: MATLAB code
Default: ''

Number of entities arrived, a — Outputs the number of entities that have arrived at
the block
off (default) | on

Number of entities that have arrived at the block.
Programmatic Use
Block Parameter: NumberOfEntitiesArrived
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Number of entities departed, d — Outputs the number of entities departed the block
off (default) | on

Number of entities that have departed the block.
Programmatic Use
Block Parameter: NumberOfEntitiesDeparted
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Number of entities remaining for next batch, rem — Outputs the number of entities
remaining for the next batch
off (default) | on

Outputs the number of entities still in the block for the next batch of entities.
Programmatic Use
Block Parameter: NumberOfEntitiesRequiredForNextBatch
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Pending entity in block, pe — Pending entities
off (default) | on

Indicates whether an entity that is yet to depart is present in the block. The value is 1 for a pending
entity, and 0 otherwise.

 Entity Batch Creator

2-19

Programmatic Use
Block Parameter: PendingEntity
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Version History
Introduced in R2016b

See Also
Entity Generator | Entity Batch Splitter

2 Blocks

2-20

Entity Batch Splitter
Split batch entities
Library: SimEvents

Description
The Entity Batch Splitter block splits a batched entity into its individual entities and outputs each
entity through the output port. A batched entity is the output of the Entity Batch Creator block.

To customize actions when entities enter, exit, and are blocked or unbatched, enter MATLAB code in
the Entry action, Exit action, Blocked action, or Unbatch action field of the Event
actions tab.

Ports
Input

port_1 — Input batch entity
scalar | vector | matrix

Input entity port for entities entering the block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Output

port_1 — Output entity
scalar | vector | matrix

Output entity port for entities exiting the block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

port_a — Number of entities arrived
scalar

Number of entities that have arrived at the block.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Number of entities arrived,
a.
Data Types: double

port_d — Number of entities that have departed the block
scalar

 Entity Batch Splitter

2-21

Number of entities that have departed the block.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Number of entities
departed, d.
Data Types: double

port_rem — Number of entities remaining in the block
scalar

Number of entities still in the block that have yet to depart.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Number of entities
remaining to depart, rem.
Data Types: double

port_pe — Pending entity in block
off (default) | on

Selecting this check box outputs the value 1 for a pending entity in the block, and 0 otherwise.

Dependencies

To enable this port, select the Statistics > Pending entity in block, pe.
Data Types: double

Parameters
Event actions — Specify the event action
Entry (default) | Unbatch | Exit | Blocked

Specify the behavior of the entity on certain events. For example, the Entry action is called when the
entity enters the block. To customize actions when entities enter, exit, or are unbatched or blocked,
enter MATLAB code in the Entry action, Exit action, Unbatch action, or Blocked action
field of the Event actions tab. For more information about event actions, see “Events and Event
Actions”. For an example, see “Manage Entities Using Event Actions”

Programmatic Use
Block Parameter: EntryAction, UnbatchAction, ExitAction, BlockedAction
Type: character vector
Values: MATLAB code
Default: ''

Number of entities arrived, a — Outputs the number of entities that have arrived at
the block
off (default) | on

Number of entities that have arrived at the block.

2 Blocks

2-22

Programmatic Use
Block Parameter: NumberOfEntitiesArrived
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Number of entities departed, d — Outputs the number of entities that have departed
the block
off (default) | on

Selecting this check box outputs the number of entities that have exited the block.

Programmatic Use
Block Parameter: NumberOfEntitiesDeparted
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Number of entities remaining to depart, rem — Outputs the number of entities that
remain in the block
off (default) | on

Outputs the number of entities still in the block that have yet to depart.

Programmatic Use
Block Parameter: NumberOfEntitiesWaitingToDepart
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Pending entity in block, pe — Pending entities
off (default) | on

Indicates whether an entity that is yet to depart is present in the block. The value is 1 for a pending
entity, and 0 otherwise.

Programmatic Use
Block Parameter: PendingEntity
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Version History
Introduced in R2016b

See Also
Entity Generator | Entity Batch Creator

 Entity Batch Splitter

2-23

Entity Find
Find entities
Library: SimEvents

Description
The Entity Find block finds entities that use a specific resource. The block receives a trigger entity
from its input port. Upon receiving the trigger entity, it initiates a search across all blocks in a model
for entities with a specific resource. You can further filter the search for finding entities by adding
additional filtering conditions. The block can manipulate the found entities in these ways.

• Search entities that satisfy a specific condition across blocks in a model to find and examine them.
• Extract found entities from the model without modifying them.
• Change the attributes of the found entities at their location in the model without extraction.

In this case, to customize actions when the entity is found, in the Event actions tab, in the On
found action field enter MATLAB code.

• Extract and change entity attributes. The extracted entities are queued in the block and rerouted
through its output port.

In this case, to customize actions when entities enter, exit, or are blocked, enter MATLAB code in
the Entry action, Exit action, or Blocked action field of the Event actions tab. For more
information, see “Write Event Actions for Legacy Models”.

The block can extract entities from Entity Server, Entity Queue, Entity Store, Resource Acquirer,
Entity Replicator, Conveyor System, Entity Selector, MATLAB Discrete-Event System, and Discrete-
Event Chart blocks.

When an entity is extracted, pending events and statistics are updated accordingly. For instance, if an
entity is extracted by an Entity Find block from an Entity Server block during the service period, the
rest of the service is canceled and the output of the statistics are updated.

Note The block can find only one entity type that you specify in the model and it cannot find or
extract entities across model reference boundaries.

For more information about common workflows involving Entity Find block, see “Find and Extract
Entities in SimEvents Models”.

2 Blocks

2-24

Ports
Input

Port_1 — Input entities to trigger finding entities
scalar | vector | matrix

Input port for entities to trigger the event of finding entities using a specific resource.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Output

Port_1 — Output found entity
scalar | vector | matrix

Output entity port for entities that are found by the block.

Dependencies

To enable this port, select the Extract found entities checkbox.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Port_f — Number of entities found
scalar

Number of entities that are found by the block.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Number of entities found, f.
Data Types: double

Port_d — Number of entities that have departed the block
scalar

Number of entities that have departed the block.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Number of entities
departed, d.
Data Types: double

Port_n — Number of found entities that have not yet departed the block
scalar

Number of found entities that have not yet departed the block.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Number of found entities in
block, n.

 Entity Find

2-25

Data Types: double

Port_w — Average wait time for found entities in the block
scalar

Average wait time for found entities in the block.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Average wait, w.
Data Types: double

Port_l — Average length of the found entity queue
scalar

Outputs the average length of the found entity queue.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Average queue length, l.
Data Types: double

Port_ex — Number of entities extracted
scalar

Number of entities that are extracted out of this block.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Number of entities
extracted, ex.
Data Types: double

Parameters
Main

Resource — Specify the name of the reference resource the entities use
Resource1 (default) | character vector

Name of the reference resource that is used by the entities to be found by the block.

Programmatic Use
Block Parameter: ResourceName
Type: character vector
Values: resource name
Default: 'Resource1'

Extract found entities — Extract and reroute found entities
off (default) | on

Extract and output the entities that are found in the search.

2 Blocks

2-26

Programmatic Use
Block Parameter: EnableOutput
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Additional filtering condition — Add optional filtering condition
off (default) | on

Enable the option to define additional matching conditions for finding entities. If selected, a MATLAB
editor appears where you can define additional matching conditions.

Programmatic Use
Block Parameter: EntityFilter
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Matching condition — Define the matching condition
match = true; (default)

Use MATLAB code to define additional matching conditions for finding entities. The block searches
for entities such that the value of the boolean variable match becomes true. For instance, when

match = isequal(trigger.Attribute1, entity.Attribute1);

the block finds entities that have the same Attribute1 value with the trigger entity, because only their
equality sets the match as true.

While authoring additional matching conditions, you can use these variables.

• trigger — Use to access the trigger entity attributes.
• entity — Use to access the attributes of the entity that is being found.
• match — Use as a Boolean value to be returned by the matching condition. The value of match is

initialized as false.

Dependencies

This check box appears if the Additional filtering condition check box in the Main tab is selected.

Programmatic Use
Block Parameter: MatchingCondition
Type: character vector
Values: MATLAB code
Default: '% match = isequal(trigger.Attribute1, entity.Attribute1);match =
true;'

Event Actions

Event actions — Specify the event action
OnFound (default) | Entry | Exit | Blocked

 Entity Find

2-27

Specify the behavior of the entity on certain events. For example, the Entry action is called when the
entity enters the block. To customize actions when entities enter, exit, or are found or blocked, enter
MATLAB code in the Entry action, Exit action, On found action, or Blocked action field
of the Event actions tab. For more information about event actions, see “Events and Event Actions”.
For an example, see “Manage Entities Using Event Actions”

Dependencies

On found action appears only if the Extract found entities check box is not selected.

Entry action, Exit action, and Blocked action appear only if the Extract found entities
check box is selected.

Programmatic Use
Block Parameter: EntryAction, ExitAction, BlockedAction
Type: character vector
Values: MATLAB code
Default: ''

Statistics

Number of entities found, f — Outputs the number of entities that are found
off (default) | on

Number of entities that are found by the block during simulation.

Programmatic Use
Block Parameter: NumberEntitiesDeparted
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Number of entities departed, d — Outputs the number of entities that have departed
the block
off (default) | on

Number of entities that have departed the block.

Dependencies

This check box appears if the Extract found entities check box in the Main tab is selected.

Programmatic Use
Block Parameter: NumberEntitiesDeparted
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Number of found entities in block, n — Outputs the number of found entities that are
yet to depart
off (default) | on

Number of found entities that are yet to depart.

2 Blocks

2-28

Dependencies

This check box appears if the Extract found entities check box in the Main tab is selected.
Programmatic Use
Block Parameter: NumberEntitiesInBlock
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Average wait, w — Outputs the average wait time
off (default) | on

Sum of the wait times for entities departing the block divided by their total number. Wait time is the
duration between the Entity Find block entry and exit of an entity. For more information, see
“Interpret SimEvents Models Using Statistical Analysis”.
Dependencies

This check box appears if the Extract found entities check box in the Main tab is selected.
Programmatic Use
Block Parameter: AverageWait
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Average queue length, l — Outputs the average length of the entity queue
off (default) | on

Accumulated time-weighted average queue size. The block computes this value by:

1 Multiplying the size of the queue by its duration to calculate time-weighted queue size
2 Summing up all time-weighted queue sizes and averaging them over total time

For more information, see “Interpret SimEvents Models Using Statistical Analysis”.
Dependencies

This check box appears if the Extract found entities check box in the Main tab is selected.
Programmatic Use
Block Parameter: AverageStoreSize
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Number of entities extracted, ex — Number of entities extracted from this block
off (default) | on

Outputs the number of extracted entities.
Dependencies

This check box appears if the Extract found entities check box in the Main tab is selected.

 Entity Find

2-29

Programmatic Use
Block Parameter: NumEntitiesExtracted
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Version History
Introduced in R2018b

See Also
Resource Releaser | Resource Pool | Resource Acquirer

Topics
“Model Using Resources”
“SimEvents Common Design Patterns”

2 Blocks

2-30

Entity Gate
Gate entities
Library: SimEvents

Description
The Entity Gate block controls when pending entities can advance in the model.

The Operating mode parameter specifies how the pending entities advance through the gate.

• Enable gate — opens and allows entities to advance whenever the control port receives an
anonymous entity with a positive value, and closes whenever it has zero or a negative value. For
more information, see “Use Queue Event Actions to Model a Storage Tank”.

• Release gate — allows one pending entity to advance for each anonymous entity or message
that arrives on the control port. At all other times, the entity input port of the block is unavailable.

• Selection gate — allows entities to advance whenever the anonymous entity value from the
control port matches the attributes of the pending entities.

Use the Entity Gate block to control the flow of entities on the entity path. Use the Entity Output
Switch block to select an output port for the departure of an entity among multiple entity output
ports. For more information, see “Route Vehicles Using an Entity Output Switch Block”.

Ports
Input

Port_1 — Input entity
scalar | vector | matrix

Input entity that carries scalar, bus, or vector data to enter the gate.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | string | fixed point

control — Incoming control entity
scalar

Input control port to accept the entity that determines the state of the gate.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — Exiting entity
scalar

 Entity Gate

2-31

Output entity port for entities leaving the gate.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | string | fixed point

Parameters
Operating mode — Select the mode of operation
Enable gate (default) | Release gate | Selection gate

Select the mode of operation of this gate. With the Operating mode parameter set to:

• Enable gate, this block represents a gate that opens whenever the control port receives an
anonymous entity with a positive value, and closes whenever it has zero or a negative value. By
definition, an open gate permits entity arrivals as long as the entities are able to immediately
advance to the next block, while a closed gate forbids entity arrivals. The anonymous entity that is
received at the control port has a numerical value of type double. Since the gate receives an
anonymous entity with a positive value and opens, an enabled gate remains open until it receives
an entity with zero or a negative value and closes.

• Release gate, this block permits the arrival of one pending entity for each anonymous entity or
message that arrives on the control port. At all other times, the entity input port of the block is
unavailable. By definition, the opening of the gate permits one pending entity to arrive if the entity
is able to immediately advance to the next block.

• Selection gate, this block permits the arrival of pending entities whenever the anonymous
entity value from the control port matches the attributes of the pending entities. Otherwise it
prevents the arrival of pending entities.

Programmatic Use
Block Parameter: OperatingMode
Type: character vector
Values: 'Enable gate' | 'Release gate' 'Selection gate'
Default: 'Enable gate'

Matching attribute — Specify name of the attribute that matches the value from the
control port
Attribute1 (default) | character vector

Name of the attribute to match the value from the control port.

Dependencies

This parameter is visible when you set Operating mode to Selection Gate.

Programmatic Use
Block Parameter: MatchingAttributeName
Type: character vector
Values: 'Attribute1' | character vector
Default: 'Attribute1'

Initial value from the control port — Specify initial value from the control port to
match the matching attribute
NaN (default) | scalar

2 Blocks

2-32

Specify the initial value to match the matching attribute which opens the gate.

Dependencies

This parameter is visible when you set Operating mode to Selection Gate.

Programmatic Use
Block Parameter: InitialValueOfMatchingAttribute
Type: character vector
Values: 'NaN' | scalar
Default: 'NaN'

Open gate at simulation start — Opening the gate at the start
off (default) | on

Select this option to open the gate at the start of the simulation.

off
Gate is closed at the start of the simulation.

on
Gate is open at the start of the simulation.

Programmatic Use
Block Parameter: OpenGateAtSimulationStar
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Version History
Introduced in R2016a

See Also
Entity Queue | Entity Multicast | Entity Server | Composite Entity Creator | Composite Entity Splitter
| Entity Input Switch | Entity Output Switch | Discrete Event Chart | Entity Replicator

Topics
“SimEvents Common Design Patterns”

 Entity Gate

2-33

Entity Generator
Generate Entities
Library: SimEvents

Description
The Entity Generator block generates entities. Entities are discrete items of interest that you can
define in a discrete-event simulation. An entity can carry scalar, bus, or vector data. The meaning of
an entity depends on the model. Entity can represent customers in a queuing system, data packets
from a remote controller to an actuator, or any discrete item you define.

By default the block entity generation method is Time-based. In this method, the block generates
entities using intergeneration times specified by the Period, from an input signal or statistical
distribution. See “Entities in a SimEvents Model”, for more information about creating time-based
and randomized entities.

The block also creates event-based entities. Choose Event-based as the Generation Method for an
external event to specify the entity intergeneration time. For an example, see “Generate Entities
When Events Occur”.

To customize actions when the entity is generated or it exits the block, in the Event actions tab, in
the Generate action, or Exit action field, enter MATLAB code. For more information, see
“Events and Event Actions”.

Ports
Input

Port_1 — Input to trigger entity generation upon arrival of events
scalar | vector | matrix

Dependencies

To enable this port, click the Entity generation tab and select Event-based for the Generation
method.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Port_2 — Input for the signal that determines the intergeneration time value for the next
entity generation
scalar | vector | matrix

Dependencies

To enable this port, click the Entity generation tab and select Time-based for the Generation
method and Signal port for the Time source.
Data Types: double

2 Blocks

2-34

Output

Port_1 — Output generated entity
scalar | vector | matrix

Output port for the generated entities departing the generator.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Port_d — Number of entities that have departed the block
scalar

Number of entities that have departed the block.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Number of entities
departed, d.
Data Types: double

Port_pe — Pending entity in block
off (default) | on

Outputs 1 for a pending entity, and 0 otherwise.

Dependencies

To enable this port, select the Statistics > Pending entity in block, pe.
Data Types: double

Port_w — Average intergeneration time
off (default) | on

Outputs the average time between generation of entities.

Dependencies

To enable this port, select the Statistics > Average intergeneration time, w.
Data Types: double

Parameters
Generation method — Select the method of entity generation
Time-based (default) | Event-based

Choose the entity generation method. Choose Time-based to generate entities using intergeneration
times from an input signal or statistical distribution. Choose Event-based for an external event to
determine the entity intergeneration time.

Programmatic Use
Block Parameter: GenerationMethod
Type: character vector

 Entity Generator

2-35

Values: 'Time-based' | 'Event-based'
Default: 'Time-based'

Time source — Select the source of the intergeneration time
Dialog (default) | Signal port | MATLAB action

Specify the source for entity intergeneration time.

• Select Dialog to specify a fixed period between entity generations.
• Select Signal port to generate entities based on an input signal.
• Select MATLAB action to define a MATLAB Script that defines the intergeneration time

represented by dt.

For more information about specifying intergeneration times for entities, see “Specify
Intergeneration Times for Entities”.

Dependencies

This parameter is visible when the Generation method is set to Time-based.

Programmatic Use
Block Parameter: TimeSource
Type: character vector
Values: 'Dialog' | 'Signal port' | 'MATLAB action'
Default: 'Dialog'

Period — Define the period between the generation of entities
1 (default) | scalar

Specify the time between entity intergeneration. For instance, if the Period is 1, the block waits 1
simulation time in between entity generations. See, “Specify Intergeneration Times for Entities” for
more information.

Tunable: Yes

Dependencies

This parameter is visible when Generation method is set to Time-based.

Programmatic Use
Block Parameter: Period
Type: character vector
Values: '1' | scalar
Default: '1'

Intergeneration time action — Specify the time between entity generations
dt = rand(1,1) (default) | MATLAB code

Use MATLAB code to specify service time. dt specifies the time between entity generations. You can
manually specify dt or use Insert pattern button to generate entities with a repeating sequence or
from a distribution. The block uses this parameter every time it is ready for entity generation. For an
example, see “Specify Intergeneration Times for Entities”.

2 Blocks

2-36

Dependencies

This parameter is visible when Service time source is set to MATLAB action.
Programmatic Use
Block Parameter: IntergenerationTimeAction
Type: character vector
Values: MATLAB code
Default: 'dt = rand(1,1);'

Generate entity at simulation start — Generate an entity at the start of the
simulation
on (default) | off

Generates entity at the start of the simulation.
Programmatic Use
Block Parameter: GenerateEntityAtSimulationStart
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Entity type — Choose the type of entity to generate
Structured (default) | Anonymous | Bus object

Choose the type of entity to generate.

• The Anonymous type has one data value associated with it.
• The Structured type (default) includes name and initial value attributes that you can specify.

•
You can attach more than one attribute to an entity by clicking .

• You can delete attributes by clicking .
•

You can change the order of the attributes by clicking and .
•

You can convert a Structured type entity to a bus object by clicking
• The Bus object type lets you generate bus objects as entities.

Click Launch Type Editor to open the Type Editor to generate bus objects. A bus object can be
an element of another bus object which can be used to create hierarchy in the data that is
attached to an entity.

For more information, see “Entities in a SimEvents Model”.
Programmatic Use
Block Parameter: EntityType
Type: character vector
Values: 'Structured' | 'Anonymous' | 'Bus object'
Default: 'Structured'

Entity priority — Specify the priority of the generated entity
300 (default) | scalar

 Entity Generator

2-37

Determines the priority of the generated entity. The lower the value the higher the priority For more
information, see “Working with Entity Attributes and Entity Priorities”.

Programmatic Use
Block Parameter: EntityPriority
Type: character vector
Values: '300' | scalar
Default: '300'

Entity type name — Specify the name of the generated entity
Entity (default) | character vector

Determines the name of the generated entity.

Dependencies

This parameter is visible when Entity type is set to Bus object or Structured.

Programmatic Use
Block Parameter: EntityTypeName
Type: character vector
Values: 'Entity' | character vector
Default: 'Entity'

Data initial value — Specify the initial value of anonymous entity data
0 (default) | scalar | vector | matrix

Set the anonymous entity data initial value. This value cannot be of type int64 or fixed-point.

Dependencies

This parameter is visible when you set Entity type to Anonymous.

Programmatic Use
Block Parameter: DataInitialValue
Type: character vector
Values: '0' | scalar | vector | matrix
Default: '0'

Attribute Name — Define the name of the generated entity attribute
Attribute1 (default) | character vector

Define entity attribute name.

Note When done, you can export the structured entity type as a bus object, with the name Entity
type name, to the base workspace. Export the bus object when using the MATLAB Discrete-Event
System and Discrete Event Chart blocks.

Dependencies

This parameter is visible when Entity type is set to Structured.

2 Blocks

2-38

Programmatic Use
Block Parameter: AttributeName
Type: character vector
Values: 'Attribute1' | character vector
Default: 'Attribute1'

Attribute Initial Value — Define the generated entity attribute initial value
1 (default) | scalar

Specify the entity attribute initial value. This parameter is visible when Entity type is set to
Structured. This value can not be of type fixed-point.

Programmatic Use
Block Parameter: AttributeInitialValue
Type: character vector
Values: 1 | scalar
Default: '1'

Event actions — Specify the behavior of the entity on certain events
Generate (default) | Exit

Define the behavior in the Event action parameter. The Generate action is called when an entity is
generated and the Exit action is called just before an entity exits the block.

Programmatic Use
Block Parameter: GenerateAction, ExitAction
Type: character vector
Values: MATLAB code
Default: ''

Number of entities departed, d — Outputs the number of entities that have departed
the block
off (default) | on

Number of entities that have departed the block.

Programmatic Use
Block Parameter: NumberEntitiesDeparted
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Pending entity present in block, pe — Pending entities
off (default) | on

Indicates whether an entity that is yet to depart is present in the block. The value is 1 for a pending
entity, and 0 otherwise. This block can have at most one pending entity because its storage capacity
is one. If there is an existing pending entity, the block does not generate another entity until the
pending entity departs the block.

Programmatic Use
Block Parameter: PendingEntityInBlock

 Entity Generator

2-39

Type: character vector
Values: 'on' | 'off'
Default: 'off'

Average intergeneration time, w — Average time between generation of entities
off (default) | on

Outputs the average time between generation of entities. Average intergeneration time, w is the
ratio of the total generation time to the total number of generated entities.

Programmatic Use
Block Parameter: AverageIntergenerationTime
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Version History
Introduced in R2016a

See Also
Entity Queue | Entity Multicast | Entity Gate | Composite Entity Creator | Composite Entity Splitter |
Entity Input Switch | Entity Output Switch | Entity Server | Discrete Event Chart | Multicast Receive
Queue | Entity Multicast

Topics
“Generate Multiple Entities at Time Zero”
“Specify Intergeneration Times for Entities”
“Generate Entities When Events Occur”
“SimEvents Common Design Patterns”
“Entities in a SimEvents Model”

2 Blocks

2-40

Entity Input Switch
Switch input entities
Library: SimEvents

Description
A typical scenario in which you might use an input switch is when multiple sources of entities feed
into a single queue, where the sequencing follows specific rules. For example, users of terminals in a
time-shared computer submit jobs to a queue that feeds into the central processing unit, where an
algorithm regulates access to the queue so as to prevent unfair domination by any one user.

Note If you want to merge message or entity paths and generate code for your component interface,
use the Simulink Message Merge block. Message Merge block's behavior is the same as the Entity
Output Switch block with Active port selection parameter set to All.

For an example, see “Generate Entities When Events Occur”.

Combine Entity Paths

You can merge multiple paths into a single path using the Entity Input Switch block with the Active
port selection parameter set to All. Merging entity paths does not change the entities themselves,
just as merging lanes on a road does not change the vehicles that travel on it. In particular, the Entity
Input Switch block does not create aggregates or batches.

Here are some scenarios in which you might combine entity paths:

• Attaching different data — Multiple entity generator blocks create entities having different values
for a particular attribute. The entities then follow a merged path but might be treated differently
later based on their individual attribute values.

• Merging queues — Multiple queues merge into a single queue.
• Connecting a feedback path — A feedback path enters the same queue as an ordinary path.

Sequence Simultaneous Pending Arrivals

The Entity Input Switch block does not experience any collisions, even if multiple entities attempt to
arrive at the same time. The categories of behavior are as follows:

• If the entity output port is not blocked when the entities attempt to arrive, then the sequence of
arrivals depends on the sequence of departure events from blocks that precede the Entity Input
Switch block.

Even if the departure time is the same for multiple entities, the sequence might affect the system's
behavior. For example, if the entities advance to a queue, the departure sequence determines their
positions in the queue.

 Entity Input Switch

2-41

• If pending entities are waiting to advance to the Entity Input Switch block when its entity output
port changes from blocked to unblocked, then the entity input ports are notified of the change
sequentially. The change from blocked to unblocked means that an entity can advance to the
Entity Input Switch block.

If at least two entities are waiting to advance to the Entity Input Switch block via distinct entity
input ports, then the notification sequence is important because the first port to be notified of the
change is the first to advance an entity to the Entity Input Switch block.

Select Arrival Path

The Entity Input Switch block allows arrival of entities at its ports. The selected entity input port can
change during the simulation.

You can also select the criterion for switching between input ports.

• Select Round robin to select ports in a round robin fashion.
• Select From control port to let the control port determine the selected port.
• Select Equiprobable to let the block randomly select any port with equal probability.

Ports
Input

Port_1 — Input entity
scalar | vector | matrix

Input entity port for entities entering the block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Port_2 — Input entity
scalar | vector | matrix

Input entity port for entities entering the block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

control — Incoming control entity
scalar

Input control port for the incoming control entity that determines the input port for the entities
arriving at the block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output

Port_1 — Output entity
scalar | vector | matrix

Output entity port for entities exiting the block.

2 Blocks

2-42

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Parameters
Number of input ports — Specify the number of input ports
2 (default) | scalar

Determines how many entity input ports the block has.
Programmatic Use
Block Parameter: NumberInputPorts
Type: character vector
Values: '2' | scalar
Default: '2'

Active port selection — Specify the active input port
All (default) | Switch

Specify the active input port to allow arrival of entities at all ports or one port at a time. Select All to
combine entity paths and allow arrival of entities at all ports. Select Switch to allow arrival of an
entity at only one port at a time.
Programmatic Use
Block Parameter: ActivePortSelection
Type: character vector
Values: 'All' | 'Switch'
Default: 'All'

Switching criterion — Specify input port switch criterion
Round robin (default) | From control port | Equiprobable

Select the criterion for switching between input ports.

• Select Round robin to select ports in a round robin fashion. Set the initial port in the Initial
port selection.

• Select From control port to let the control port determine the selected port. A control port
will appear to input an anonymous entity carrying data with a value greater than 0, and smaller
than or equal to the number of input ports to determine the active port.

• Select Equiprobable to let the block randomly select any port with equal probability. Set the
Seed to generate a random number and to determine the active input port.

Programmatic Use
Block Parameter: SwitchingCriterion
Type: character vector
Values: 'Round robin' | 'From control port' | 'Equiprobable'
Default: 'Round robin'

Initial port selection — Specify the initial input port for entity entry
1 (default) | scalar

 Entity Input Switch

2-43

Specify initially which port allows arrival of an entity.

Programmatic Use
Block Parameter: InitialPortSelection
Type: character vector
Values: '1' | scalar
Default: '1'

Seed — Specify the seed for the random number generator to determine the input port
23453 (default) | scalar

Specify the seed for the random number generator to determine the input port.

Dependencies

This parameter is visible when Switching criterion is set to Equiprobable.

Programmatic Use
Block Parameter: Seed
Type: character vector
Values: '23453' | scalar
Default: '23453'

Version History
Introduced in R2016a

See Also
Entity Queue | Entity Gate | Composite Entity Creator | Composite Entity Splitter | Entity Output
Switch | Multicast Receive Queue | Entity Multicast | Entity Replicator | Entity Terminator

Topics
“SimEvents Common Design Patterns”

2 Blocks

2-44

Entity Multicast
Send multicast entities
Library: SimEvents

Description
The Entity Multicast block broadcasts entities. An entity that arrives at the block is cloned into copies
and sent with a Multicast tag. Each Entity Queue block with Entity arrival source specified as
Multicast with the same Multicast tag receives copies. For more information, see “Overview of
Queues and Servers in Discrete-Event Simulation”.

Ports
Input

Port_1 — Input entity
scalar | vector | matrix

Input entity port for entities entering the block.

Note Event actions are not supported with string entity data type

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | string | fixed point

Output

send — Broadcast entities
scalar | vector | matrix

Output broadcasted entities.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | string | fixed point

Parameters
Multicast tag — Specify the tag with which to broadcast the entities
A (default) | character vector

Specify the tag with which to broadcast the entities. For example if the default tag A is used, each
Entity Queue block with Entity arrival source specified as Multicast and the Multicast tag is set
as A receives a copy.

 Entity Multicast

2-45

Programmatic Use
Block Parameter: MulticastTag
Type: character vector
Values: 'A' | character vector
Default: 'A'

Version History
Introduced in R2016a

See Also
Entity Generator | Multicast Receive Queue

2 Blocks

2-46

Entity Output Switch
Output entities
Library: SimEvents

Description
The Entity Output Switch block allows you to select an output port for the departure of an entity
among multiple entity output ports. The selected port can change during the simulation and you can
choose the criterion for switching between output ports.

Here are some scenarios in which you might use an output switch:

• Entities advance to one of several queues based on efficiency or fairness concerns. For example,
airplanes advance to one of several runways depending on queue length, or customers advance to
the first available cashier out of several cashiers.

Comparing different approaches to efficiency or fairness, by testing different rules to determine
the selected output port of the output switch, might be part of your goal in simulating the system.
For an example, see “Route Vehicles Using an Entity Output Switch Block”.

• Entities advance to a specific destination based on their characteristics. For example, parcels
advance to one of several delivery vehicles based on the locations of the specified recipients.

• Entities use an alternate route in case the preferred route is blocked. For example, a
communications network drops a packet if the route to the transmitter is blocked and the
simulation gathers statistics about dropped packets.

Alternatively, you can use the Entity Gate block to control the flow of entities on a specific entity path.
For more information, see “Using Entity Priority to Sequence Departures”.

Ports
Input

Port_1 — Input entity
scalar | vector | matrix

Input entity port for entities entering the block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

control — Incoming control entity
scalar

Input control port for the incoming control entity that determines the output port for the entities
departing from the block.

 Entity Output Switch

2-47

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — Output entity
scalar | vector | matrix

Output entity port for entities exiting the block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Port_2 — Output entity
scalar | vector | matrix

Output entity port for entities exiting the block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Parameters
Number of output ports — Specify the number of output ports
2 (default) | scalar

Number of output ports for entity departure.
Programmatic Use
Block Parameter: NumberOutputPorts
Type: character vector
Values: '2' | scalar
Default: '2'

Switching criterion — Choose the switching criterion
First port that is not blocked (default) | Round robin | From control port | From
attribute | Equiprobable

Choose the criterion for switching between output ports.

• To output the entity to the first unblocked port, select First port that is not blocked.

Assume an example where entities arriving at the Entity Output Switch block depart through the
first entity output port that is not blocked, as long as at least one entity output port is not blocked.
An everyday example of this approach is a single queue of people waiting for service by one of
several bank tellers, cashiers, call center representatives, etc. Each person in the queue wants to
advance as soon as possible to the first available service provider without preferring one over
another.

• To output entities in a round robin fashion among the output ports, select Round robin.
• Select From control port to let the control port determine the selected port for entity

departure. A control port will appear to input an anonymous entity carrying data with a value
greater than 0 and smaller than or equal to the number of output ports to determine the active
port.

2 Blocks

2-48

• To specify an attribute that determines the output port, select From attribute. The attribute
value is greater than 0 and smaller than or equal to the number of output ports to determine the
active port.

Consider the situation in which parcels are sorted among several delivery vehicles based on the
locations of the specified recipients. If each parcel is an entity, then you can attach data to each
entity to indicate the location of its recipient.

• To randomly select an output port for entity departure, select Equiprobable. Set the Seed to
generate a random number and to determine the active output port.

Note The block rounds a double precision value to the nearest integer less than or equal to its value
as port selection. For instance, the value 0.3 is rounded of to 0 which is not a valid value for port
selection.

Programmatic Use
Block Parameter: SwitchingCriterion
Type: character vector
Values: 'First port that is not blocked' | 'Round robin' | 'From control port' |
'From attribute' | 'Equiprobable'
Default: 'First port that is not blocked'

Initial port selection — Specify the output port at the start of the simulation
1 (default) | scalar

Select the initial port for the entity departure.

Dependencies

This parameter is visible when Switching criterion is set to Round robin or From control
port.

Programmatic Use
Block Parameter: InitialPortSelection
Type: character vector
Values: '1' | scalar
Default: '1'

Switch Attribute name — Specify the attribute that determines the output port
Attribute1 (default) | character vector

Specify the attribute name used to switch the output port.

Dependencies

This parameter is visible when Switching criterion is set to From attribute.

Programmatic Use
Block Parameter: SwitchAttributeName
Type: character vector
Values: 'Attribute1' | character vector
Default: 'Attribute1'

 Entity Output Switch

2-49

Seed — Specify the seed
34567 (default) | scalar

Specify the seed for the random number generator to determine the output port.

Dependencies

This parameter is visible when Switching criterion is set to Equiprobable.

Programmatic Use
Block Parameter: Seed
Type: character vector
Values: '34567' | scalar
Default: '34567'

Version History
Introduced in R2016a

See Also
Entity Queue | Entity Gate | Composite Entity Creator | Composite Entity Splitter | Entity Input
Switch | Multicast Receive Queue | Entity Multicast | Entity Replicator | Entity Terminator

Topics
“SimEvents Common Design Patterns”

2 Blocks

2-50

Queue, Entity Queue
Enqueue messages and entities
Library: Simulink / Messages & Events

SimEvents

Description
This block stores entities or messages in a queue, based on the order of arrival or priority. Each
element at the head of the queue departs when the downstream block is ready to accept it. The
Queue block and the Entity Queue block are the same blocks with different default values for the
Overwrite the oldest element if queue is full check box.

You can specify the capacity of the queue, and the policy when the queue is full. The block supports
three different message or queue sorting policies, first-in-first out (FIFO), last-in-first out (LIFO), and
priority. The priority queue can be used only when the Overwrite the oldest element if queue is
full check box is cleared.

Ports
Input

Port_1 — Input entity or message
scalar | vector | matrix

Input entity or message that carries scalar, bus, or vector data to enter the queue.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Output

Port_1 — Output entity or message
scalar | vector | matrix

Output port that allows entities or messages at the head of the queue to depart when a downstream
block is ready to accept them.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Port_d — Number of entities that have departed the block
scalar

Number of entities that have departed the block.

Dependencies

To enable this port, select Overwrite the oldest element if queue is full check box, and click the
Statistics tab and select the box labeled Number of entities departed, d.

 Queue, Entity Queue

2-51

Data Types: double

Port_n — Number of entities that have not yet departed the block
scalar

Number of entities that have not yet departed the block.

Dependencies

To enable this port, select Overwrite the oldest element if queue is full check box, and click the
Statistics tab and select the box labeled Number of entities in block, n.
Data Types: double

Port_w — Average wait time for entities in the block
scalar

Average wait time for entities in the block.

Dependencies

To enable this port, select Overwrite the oldest element if queue is full check box, and click the
Statistics tab and select the box labeled Average wait, w.
Data Types: double

Port_l — Average length of the entity queue
scalar

Port_l outputs the average length of the entity queue.

Dependencies

To enable this port, select Overwrite the oldest element if queue is full check box, and click the
Statistics tab and select the box labeled Average queue length, l.
Data Types: double

Port_ex — Number of entities extracted
scalar

Number of entities that are pulled out of this block.

Dependencies

To enable this port, select Overwrite the oldest element if queue is full check box, and click the
Statistics tab and select the box labeled Number of entities extracted, ex.
Data Types: double

Parameters
Overwrite the oldest element if queue is full — Specify queue overwriting policy
on (default for Simulink) | off (default for SimEvents)

Select this check box to choose between two queue overwriting policies.

2 Blocks

2-52

• If you select the check box, an incoming message overwrites the oldest if the queue is full.

This mode represents a simple message buffer that you can use to generate asynchronous
communication between Simulink components and production code.

• If you clear the check box, the block does not accept new messages if the queue is full.

In this mode, you can manipulate entity data using event actions and visualize statistics.

To customize actions when entities or messages enter, exit, or are blocked, enter MATLAB code in
the Entry action, Exit action, or Blocked action field of the Event actions tab. For more
information, see “Events and Event Actions”.

For an example, see “Manage Entities Using Event Actions”.

Programmatic Use
Block Parameter: QueueOverwriting
Type: character vector
Values: 'on' | 'off'
Default: 'on' (for Simulink) and 'off' (for SimEvents)

Capacity — Specify the capacity of the queue
25 (default) | scalar

Specify the capacity of the queue.
Programmatic Use
Block Parameter: Capacity
Type: character vector
Values: '25' | scalar
Default: '25'

Queue type — Choose the queue type
FIFO (default) | LIFO | Priority

Choose the queue type.

• FIFO — first-in-first-out
• LIFO — last-in-first-out
• Priority — store elements in order of priority, see “Serve High-Priority Customers by Sorting

Entities Based on Priority”. Priority can be selected when you clear the Overwrite the oldest
element if queue is full check box.

Note Priority queue does not support fixed point data type.

Programmatic Use
Block Parameter: QueueType
Type: character vector
Values: 'FIFO' | 'LIFO' | 'Priority'
Default: 'FIFO'

Multicast tag — Specify the tag when accepting entities broadcast via multicast sources
A (default) | character vector

 Queue, Entity Queue

2-53

Specify the tag when accepting entities broadcast via multicast sources. The Entity Multicast block
requires SimEvents license.

Dependencies

This parameter is visible when you clear the Overwrite the oldest element if queue is full check
box, and set Entity arrival source to Multicast.

Programmatic Use
Block Parameter: MulticastTag
Type: character vector
Values: 'A' | character vector
Default: 'A'

Priority source — Specify which attribute of the entity determines its priority
PriorityAttribute (default) | character vector

Specify which attribute of the entity determines its priority.

Dependencies

This parameter is visible when you clear the Overwrite the oldest element if queue is full check
box, and set Queue type to Priority.

Programmatic Use
Block Parameter: PrioritySource
Type: character vector
Values: 'PriorityAttribute' | character vector
Default: 'PriorityAttribute'

Sorting direction — Choose the direction of sorting based on priority
Ascending (default) | Descending

Choose the direction of sorting based on priority.

• Ascending — Elements with smaller priority values appear in front of the queue.
• Descending — Elements with greater priority values appear in front of the queue.

Dependencies

This parameter is visible when you clear the Overwrite the oldest element if queue is full check
box, and set Queue type to Priority.

Programmatic Use
Block Parameter: SortingDirection
Type: character vector
Values: 'Ascending' | 'Descending'
Default: 'Ascending'

Entity arrival source — Choose the source of arrival for the entities
Input port (default) | Multicast

2 Blocks

2-54

Choose the source of arrival for the entities.

• Input port — Input port is source of messages or entities.
• Multicast — Entity Multicast block is source of entities. The Entity Multicast block requires

SimEvents license.

Dependencies

This parameter is visible when you clear the Overwrite the oldest element if queue is full check
box, and set Queue type to Priority.

Programmatic Use
Block Parameter: EntityArrivalSource
Type: character vector
Values: 'Input port' | 'Multicast'
Default: 'Input port'

Event action — Specify the behavior of the entity in certain events
Entry (default) | Exit | Blocked

Specify the behavior of the entity in certain events. Define the behavior in the Event action
parameter. The Entry and the Exit actions are called just after the entity entry and just before entity
exit. The Blocked action is called after an entity is blocked. For more information, see “Events and
Event Actions”.

Note If an event action changes an entity, related block behavior such as resorting a priority queue,
and rescheduling of any events, will occur after the event action has fully finished and returned.

Note Event actions do not support fixed point data type.

Dependencies

Event actions are visible when you clear the Overwrite the oldest element if queue is full check
box.

Programmatic Use
Block Parameter: EntryAction, ExitAction, BlockedAction
Type: character vector
Values: MATLAB code
Default: ''

Number of entities departed, d — Outputs the number of entities that have departed
the block
off (default) | on

Number of entities that have departed the block.

Dependencies

Number of entities departed, d is visible when you clear the Overwrite the oldest element if
queue is full check box.

 Queue, Entity Queue

2-55

Programmatic Use
Block Parameter: NumberEntitiesDeparted
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Number of entities in block, n — Outputs the number of entities present in the block,
that are yet to depart
off (default) | on

Number of entities present in the block, but which are yet to depart.

Dependencies

Number of entities in block, n is visible when you clear the Overwrite the oldest element if
queue is full check box.

Programmatic Use
Block Parameter: NumberEntitiesInBlock
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Average wait, w — Outputs the average wait time
off (default) | on

Sum of the wait times for entities departing the block divided by their total number. Wait time is the
duration between the Entity Queue block entry and exit of an entity. For more information, see
“Interpret SimEvents Models Using Statistical Analysis”.

Dependencies

Average wait, w is visible when you clear the Overwrite the oldest element if queue is full check
box.

Programmatic Use
Block Parameter: AverageWait
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Average queue length, l — Outputs the average length of the entity queue
off (default) | on

Accumulated time-weighted average queue size. The block computes this value by:

1 Multiplying the size of the queue by its duration to calculate time-weighted queue size
2 Summing up all time-weighted queue sizes and averaging them over total time

For more information, see “Interpret SimEvents Models Using Statistical Analysis”.

2 Blocks

2-56

Dependencies

Average queue length, l is visible when you clear the Overwrite the oldest element if queue is
full check box.

Programmatic Use
Block Parameter: AverageQueueLength
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Number of entities extracted, ex — Number of entities extracted from this block
off (default) | on

Outputs the number of extracted entities which are pulled out from this block by the Entity Find
block. The Entity Find block requires a SimEvents license. If the extracted entity is the first entity in
the queue, the next entity is set as the pending entity to leave the block. If an entity attribute defines
the priority in a priority queue and it is modified by the Entity Find block, the queue is sorted again.
When an entity is extracted, Number of entities departed, d, Number of entities in block, n,
Average wait, w, and Average queue length, l statistics are updated accordingly. For more
information about finding and extracting entities, see “Find and Extract Entities in SimEvents
Models”.

Dependencies

Number of entities extracted, ex is visible when you clear the Overwrite the oldest element if
queue is full check box.

Programmatic Use
Block Parameter: NumEntitiesExtracted
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | integer |

single | string
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2016a

 Queue, Entity Queue

2-57

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Code generation is not supported for event actions and statistics.

See Also
Entity Generator | Entity Server | Multicast Receive Queue | Entity Multicast | Message Send |
Message Receive

Topics
“Overview of Queues and Servers in Discrete-Event Simulation”
“SimEvents Common Design Patterns”

2 Blocks

2-58

Entity Replicator
Replicate entities
Library: SimEvents

Description
The Entity Replicator block duplicates entities. It outputs replica entities and can also output the
original entity. The block provides an output port for the original entity.

If the original entity departs the block before the replicas, then its replicas are destroyed. Selecting
the Hold original entity until all replicas depart check box ensures that the replicas depart the
block before the original entity.

An original entity can be extracted from this by block by the Entity Find block. If an original entity
waiting in the Entity Replicator block is extracted, all the replicas are destroyed. Only the original
entities can be extracted because the replicas can not acquire resources in this block. For more
information about finding and extracting entities, see “Find and Extract Entities in SimEvents
Models”.

Ports
Input

Port_1 — Input entity
scalar | vector | matrix

Input entity port for entities entering the block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | string | fixed point

Output

Port_1 — Output replica entity
scalar | vector | matrix

Output entity port for replica entities exiting the block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | string | fixed point

Port_2 — Output the entity that is replicated
scalar | vector | matrix

Output entity port for original entities exiting the block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | string | fixed point

 Entity Replicator

2-59

Parameters
Replicas depart from — Choose how replicas depart
Separate output ports (default) | Single output port

Choose if the replicas depart from separate output ports or a single output port.

• Separate output ports — Outputs one replica entity from each output port
• Single output port — Outputs all replicas from a single output port

Programmatic Use
Block Parameter: ReplicasDepartFrom
Type: character vector
Values: 'Separate output ports' | 'Single output port'
Default: 'Separate output ports'

Replication amount source — Specify source of replica number
Dialog (default) | Attribute

Specify the source of replica number.

• Select Dialog to specify the number of replicas in the dialog box.
• Select Attribute to select an attribute that specifies the number of replicas.

Dependencies

This parameter is visible when you set Replicas depart from to Single output port.

Programmatic Use
Block Parameter: ReplicationAmountSource
Type: character vector
Values: 'Dialog' | 'Attribute'
Default: 'Dialog'

Number of replicas — Specify the number of replicas
1 (default) | scalar

Specify the number of replicas. If you select Single output port, all replicas depart from this
output port. If you select Separate output ports, each replica has its own port.

Dependencies

This parameter is visible when you set Replicas depart from to Separate output ports or
Single output port and Replication amount source to Dialog.

Programmatic Use
Block Parameter: NumberReplicas
Type: character vector
Values: '1' | scalar
Default: '1'

2 Blocks

2-60

Replicate attribute name — Specify the attribute that determines the number of
replicas
ReplicateAttribute (default) | character vector

Dependencies

Specify the attribute that determines the number of replicas. This parameter is visible when you set
Replicas depart from to Single output port and Replication amount source to Attribute.

Programmatic Use
Block Parameter: ReplicateAttributeName
Type: character vector
Values: 'ReplicateAttribute' | character vector
Default: 'ReplicateAttribute'

Hold original entity until all replicas depart — Choose how replicas depart
off (default) | on

Select this check box to hold the original entity until all the replicas have departed. The block first
attempts to send all the replicas before it sends out the original entity. Selecting this check box
prevents destruction of replica entities when they do not depart the block before the original entity.

Programmatic Use
Block Parameter: HoldOriginalEntityUntilAllReplicasDepart
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Version History
Introduced in R2016a

See Also
Entity Generator | Entity Server

Topics
“Enable a Gate for a Time Interval”
“SimEvents Common Design Patterns”

 Entity Replicator

2-61

Entity Selector
Select entities
Library: SimEvents

Description
The Entity Selector block selects entities from multiple streams of ready-to-leave entities, and
matches them to a reference entity. You can use this block for modeling scenarios which involve items
to be matched based on input. For instance, you can model a facility that produces parts which are
matched to the corresponding order.

The block first accepts a reference entity with its Key entity attribute name. Then the block selects
a matching entity with Matching entity attribute name(s) from each of the other input ports
accepting incoming entities. The match is based on the equality of the specified attribute values.
When a match is found across all the entity streams, the set of matching entities and the key entity
become ready to depart.

The Entity Store block can be used as a temporary container for entities to be selected by the Entity
Selector block. For an example, see “Match Entities Based on Attributes”.

Ports
Input

Key — Incoming reference entity
scalar | vector | matrix

Input entity port for reference entities entering the block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Port_1 — Incoming entity
scalar | vector | matrix

Input entity port for matching entities entering the block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Output

Port_1 — Exiting reference entity
scalar | vector | matrix

Output entity port for reference entities exiting the block.

2 Blocks

2-62

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Port_2 — Exiting matched entity
scalar | vector | matrix

Output entity port for matching entities exiting the selector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Port_d — Number of entities that have departed the block
scalar

Number of entities that have departed the block.

Dependencies

To enable this port, click Statistics and select the Number of entities departed, d check box.
Data Types: double

Port_n — Number of entities that have not yet departed the block
scalar

Number of entities that have not yet departed the block.

Dependencies

To enable this block, click Statistics and select the Number of entities in block, n check box.
Data Types: double

Port_ex — Number of entities extracted
scalar

Number of entities that are pulled out of this block.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Number of entities
extracted, ex.
Data Types: double

Parameters
Number of matching streams — Determine how many input entity streams the block
accepts
1 (default) | numerical

Specify the number of entity streams to be matched to the reference entity. The block can accept at
most 8 matching streams.

Programmatic Use
Block Parameter: mNumberOfStreams

 Entity Selector

2-63

Type: character vector
Values: '1' | scalar
Default: '1'

Key entity attribute Name — Specify name of reference attribute
{'ID'} (default) | character vector

Name of the reference attribute that is used to evaluate a match.

Programmatic Use
Block Parameter: mKeyEntityAttributeName
Type: character vector
Values: '{'ID'}' | character vector
Default: '{'ID'}'

Matching entity attribute name(s) — Specify name of selected attribute names
{'Type'} (default) | character vector

Name of the matching entity attribute that is used to evaluate a match. You can specify one attribute
name, or an array of attribute names that are compared with the key value to evaluate a match.

Programmatic Use
Block Parameter: mEntityAttributeName
Type: character vector
Values: '{'Type'}' | character vector
Default: '{'Type'}'

Number of entities source — Source to determine the number of entities to be matched
Dialog (default) | Attribute

Source that determines the number of entities to be selected from each stream.

Programmatic Use
Block Parameter: mMatchingNumberSource
Type: character vector
Values: 'Dialog' | 'Attribute'
Default: 'Dialog'

Number of entities to select — Number of entities to select from each of the incoming
entity streams
1 (default) | scalar

Number of entities to be selected from each matching stream. You can specify 0, a positive integer, or
an array of positive integers to determine the number of entities to select from each matching entity
stream.

Dependencies

To enable this parameter, set the Number of entities source parameter to Dialog.

Programmatic Use
Block Parameter: mNumberOfMatches

2 Blocks

2-64

Type: character vector
Values: '1' | scalar
Default: '1'

Key attribute for number of entities — Key attribute name that determines the
number of entities to be matched
Name (default) | character vector

The name of the key attribute that determines the number of entities to be selected from each
matching stream. The attribute value can be an integer or an array of integers of size equal to the
number of incoming entity streams.
Dependencies

To enable this parameter, set the Number of entities source parameter to Attribute.
Programmatic Use
Block Parameter: mNumberOfMatchesAttribute
Type: character vector
Values: 'Name' | character vector
Default: 'Name'

Number of entities departed, d — Outputs the number of entities that have departed
the block
off (default) | on

Number of entities that have exited the block.
Programmatic Use
Block Parameter: mNumEntitiesDepOpt
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Number of entities in block, n — Outputs the number of entities present in the block,
which have yet to depart
off (default) | on

Number of entities present in the block, which have yet to depart.
Programmatic Use
Block Parameter: mNumEntitiesInBlockOpt
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Number of entities extracted, ex — Outputs the number of entities extracted from the
block
off (default) | on

Outputs the number of extracted entities which are pulled out from this block by the Entity Find
block. If a key entity is extracted, the Entity Selector block waits until all the matching entities arrive

 Entity Selector

2-65

at the block. Then, the matching entities depart from the corresponding output port. If a matching
entity is extracted, the block looks for another matching entity. When an entity is extracted, Number
of entities departed, d, and Number of entities in block, n statistics are updated accordingly.

Programmatic Use
Block Parameter: mNumEntitiesExtractedOpt
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Version History
Introduced in R2018a

See Also
Entity Queue | Entity Store | Entity Multicast | Entity Server | Composite Entity Creator | Composite
Entity Splitter | Entity Input Switch | Entity Output Switch | Discrete Event Chart | Entity Replicator

Topics
“SimEvents Common Design Patterns”
“Match Entities Based on Attributes”

2 Blocks

2-66

Entity Server
Serve entities
Library: SimEvents

Description
The Entity Server block serves entities as they arrive. In a discrete-event simulation, a server stores
entities for a length of time, called service time, and then attempts to output the entity. During the
service period, the block is said to be serving the entity that it stores. The block can serve multiple
entities simultaneously and output each entity through the output port, unless the port is blocked.
When the block permits preemption, an entity in the server can depart early through a second port.

To customize actions when entities enter, complete service, exit, and are blocked or preempted by the
block, enter MATLAB code in the Entry action, Service complete action, Exit action,
Blocked action, or Preempt action field of the Event actions tab. For more information, see
“Events and Event Actions”.

Ports
Input

Port_1 — Input entity
scalar | vector | matrix

Input entity that carries scalar, bus, or vector data to enter the server.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | string | fixed point

Port_2 — Input signal port for service time source
scalar

Input signal port to determine service time.

Dependencies

This port is visible when Service time source is set to Signal port.
Data Types: double

Output

Port_1 — Output entity
scalar | vector | matrix

Output entity port for entities exiting the server.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | string | fixed point

 Entity Server

2-67

Port_d — Number of entities that have departed the block
scalar

Number of entities that have departed the block.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Number of entities
departed, d.
Data Types: double

Port_n — Number of entities that have not yet departed the block
scalar

Number of entities that have not yet departed the block.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Number of entities in block,
n.
Data Types: double

Port_pe — Pending entity in block
off (default) | on

Selecting this check box outputs the value 1 for a pending entity in the block, and 0 otherwise.

Dependencies

To enable this port, select the Statistics > Pending entity in block, pe.
Data Types: double

Port_np — Number of pending entities
off (default) | on

Selecting this check box outputs the number of pending entities in the block.

Dependencies

To enable this port, select the Statistics > Number of pending entities, np.
Data Types: double

Port_w — Average wait time for entities in the block
scalar

Average wait time for entities in the block.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Average wait, w.
Data Types: double

Port_util — Outputs the average time the server is occupied
scalar

2 Blocks

2-68

Average time the server is occupied.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Utilization, util.
Data Types: double

Port_p — Outputs the number of preempted entities
scalar

Number of preempted entities.

Dependencies

To enable this port, first click the Preemption tab, then click Statistics tab and select the box
labeled Number of entities preempted, p.
Data Types: double

Port_ex — Number of entities extracted
scalar

Number of entities that are pulled out of this block.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Number of entities
extracted, ex.
Data Types: double

Parameters
Capacity — Specify the capacity of the server
1 (default) | scalar

Specify the number of entities the block can serve simultaneously.

Programmatic Use
Block Parameter: Capacity
Type: character vector
Values: '1'| scalar
Default: '1'

Service time source — Choose the source to specify the service time
Dialog (default) | Signal port | Attribute | MATLAB action

Determine the source that specifies the service time.

You can select:

• Dialog

Enter the constant value in the Service time value parameter.

 Entity Server

2-69

• Signal port

Connect a time source to the resulting signal port.
• Attribute

Enter the name of the attribute that contains data to be interpreted as service.
• MATLAB action

In the Service time action section, enter MATLAB code to vary the service time. Assign the
variable dt, which the model uses as service time.

Programmatic Use
Block Parameter: ServiceTimeSource
Type: character vector
Values: 'Dialog' | 'Signal port' | 'Attribute'| 'MATLAB action'
Default: 'Dialog'

Service time attribute name — Specify service time source attribute name
ServiceTime (default) | character vector

Determine the name of the attribute that is used as the service time value.
Dependencies

This parameter is visible when Service time source is set to Attribute.
Programmatic Use
Block Parameter: ServiceTimeAttributeName
Type: character vector
Values: 'ServiceTime' | character vector
Default: 'ServiceTime'

Service time value — Specify the value of the service time
1 (default) | scalar

Tunable: Yes
Dependencies

This parameter is visible when Service time source is set to Dialog.
Programmatic Use
Block Parameter: ServiceTimeValue
Type: character vector
Values: '1.0' | scalar
Default: '1.0'

Service time action — Specify service time
dt = rand(1,1) (default) | MATLAB code

Use MATLAB code to specify service time. dt specifies the service time. You can manually specify dt
or use Insert pattern button to specify service time from a repeating sequence or from a
distribution. For an example, see “Count Simultaneous Departures from a Server”.

2 Blocks

2-70

Dependencies

This parameter is visible when Service time source is set to MATLAB action.
Programmatic Use
Block Parameter: ServiceTimeAction
Type: character vector
Values: MATLAB code
Default: 'dt = rand(1,1);'

Event action — Specify the behavior of the entity in certain events
Entry (default) | Service complete | Exit | Blocked | Preempt

Specify the behavior of the entity in certain events. Define the behavior in the Event action
parameter. The Entry and the Exit actions are called just after the entity entry and just before entity
exit. The Service complete action is called after the completion of the entity service. The Blocked
action is called after an entity is blocked. The Preempt is called after the preemption.

Note If an event action changes an entity, related block behavior such as resorting a priority queue,
and rescheduling of any events, will occur after the event action has fully finished and returned.

Programmatic Use
Block Parameter: EntryAction, ServiceCompleteAction, ExitAction, BlockedAction,
PreemptAction
Type: character vector
Values: MATLAB code
Default: ''

Permit preemption based on attribute — Enable preemption of entities
off (default) | on

Select this check box if you want to allow preemption of entities. Preemption is the replacement of an
entity in a server block by an entity that satisfies certain criteria. Selecting this check box enables
these parameters:

• Sorting attribute name in the Preemption tab
• Sorting direction in the Preemption tab
• Write residual time to attribute in the Preemption tab
• Number of entities preempted, p in the Statistics tab

For an example, see “Task Preemption in a Multitasking Processor”.
Programmatic Use
Block Parameter: PermitPreemptionBasedOnAttribute
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Sorting attribute name — Specify the name of the attribute used to determine the
priority
entity | entitySys.priority | character vector

 Entity Server

2-71

Specify the name of the attribute used to determine the priority.

Dependencies

This parameter is visible when the Permit preemption based on attribute box is selected.

Programmatic Use
Block Parameter: SortingAttributeName
Type: character vector
Values: 'entity' | 'entitySys.priority' | character vector
Default: 'entity'

Sorting direction — Choose the direction of sorting the entities
Ascending (default) | Descending

Specify if the entities are sorted in ascending or descending order.

• ascending — Sorting entities with smaller key values to have a higher priority
• descending — Sorting entities with greater key values to have a higher priority

Dependencies

This parameter is visible when the Permit preemption based on attribute box is selected.

Programmatic Use
Block Parameter: SortingDirection
Type: character vector
Values: 'Ascending' | 'Descending'
Default: 'Ascending'

Write residual time to attribute — Save the residual service time from a preempted
entity to an attribute
off (default) | on

Dependencies

This parameter is visible when the Permit preemption based on attribute box is selected.

Programmatic Use
Block Parameter: WriteResidualTimeToAttribute
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Residual time attribute name — Specify the name of the attribute to contain the
residual service time of a preempted entity
ResidualTime (default) | character vector

Dependencies

This parameter is visible when the Write residual time to attribute box is selected.

2 Blocks

2-72

Programmatic Use
Block Parameter: ResidualTimeAttributeName
Type: character vector
Values: 'ResidualTime' | character vector
Default: 'ResidualTime'

Number of entities departed, d — Outputs the number of entities that have departed
the block
off (default) | on

Number of entities that have departed the block.

Programmatic Use
Block Parameter: NumberEntitiesDeparted
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Number of entities in block, n — Outputs the number of entities present in the block,
that are yet to depart
off (default) | on

Number of entities present in the block that are yet to depart.

Programmatic Use
Block Parameter: NumberEntitiesInBlock
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Pending entity in block, pe — Pending entities
off (default) | on

Indicates whether an entity that is yet to depart is present in the block. The value is 1 for a pending
entity, and 0 otherwise.

Programmatic Use
Block Parameter: PendingEntityPresentInBlock
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Number of pending entities, np — Number of Pending entities
off (default) | on

Outputs the number of pending entities the block has served that are yet to depart.

Programmatic Use
Block Parameter: NumberEntitiesPending
Type: character vector
Values: 'on' | 'off'

 Entity Server

2-73

Default: 'off'

Average wait, w — Outputs the average wait time
off (default) | on

Sum of the wait times for entities departed the block divided by their total number. Wait time is the
duration between the Entity Server block entry and exit of an entity. For more information,
see“Interpret SimEvents Models Using Statistical Analysis”.

Programmatic Use
Block Parameter: AverageWait
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Utilization, util — Outputs the average time the server is occupied
off (default) | on

Average time the server is occupied. The block calculates this time as the ratio of the total wait time
for entities to the server capacity multiplied by the total simulation time.

Wait time is the duration between the Entity Server block entry and exit of an entity. Total wait time is
the sum of the wait times for entities departed the block.

Programmatic Use
Block Parameter: Utilization
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Number of entities preempted, p — Outputs the number of preempted entities
off (default) | on

Outputs the number of preempted entities. Preemption is the replacement of an entity in a server
block by an entity that satisfies certain criteria.

Dependencies

This check box appears if the Permit preemption based on attribute check box is selected.

Programmatic Use
Block Parameter: NumberEntitiesPreempted
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Number of entities extracted, ex — Number of entities extracted from this block
off (default) | on

Outputs the number of extracted entities which are pulled out from this block by the Entity Find
block. If an entity is being served during the extraction, the service is terminated. If an attribute that
defines the service time and it is modified by the Entity Find block, service time does not change.

2 Blocks

2-74

When an entity is extracted, Number of entities departed, d, Number of entities in block, n,
Average wait, w, and Utilization, util statistics are updated accordingly. For more information
about finding and extracting entities, see “Find and Extract Entities in SimEvents Models”.

Programmatic Use
Block Parameter: NumEntitiesExtracted
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Version History
Introduced in R2016a

See Also
Entity Generator | Entity Multicast | Entity Gate | Composite Entity Creator | Composite Entity
Splitter | Entity Input Switch | Entity Output Switch | Entity Queue | Discrete Event Chart | Multicast
Receive Queue | Entity Multicast | Entity Replicator | Entity Terminator | MATLAB Discrete Event
System | Resource Acquirer | Resource Releaser | Resource Pool

Topics
“Count Simultaneous Departures from a Server”
“Model Server Failure”
“Overview of Queues and Servers in Discrete-Event Simulation”
“Storage with Servers”
“SimEvents Common Design Patterns”

 Entity Server

2-75

Entity Store
Store entities
Library: SimEvents

Description
The Entity Store block serves as a container or bin to store unordered entities. The entities are ready
to leave the block immediately provided they are accepted by the next block. The Entity Store block
attempts to forward an entity immediately upon its arrival. If the attempt fails, the block puts the
entity in a pending state. The entity can then leave when the next block can start accepting it.

To customize actions when entities enter, exit, or are blocked, enter MATLAB code in the Entry
action, Exit action, or Blocked action field of the Event actions tab.

Ports
Input

Port_1 — Input entity
scalar | vector | matrix

Input entity port for entities entering the storage.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Output

Port_1 — Output entity
scalar | vector | matrix

Output entity port for entities exiting the storage.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Port_d — Number of entities that have departed the block
scalar

Number of entities that have departed the block.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Number of entities
departed, d.
Data Types: double

2 Blocks

2-76

Port_n — Number of entities that have not yet departed the block
scalar

Number of entities that have not yet departed the block.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Number of entities in block,
n.
Data Types: double

Port_w — Average wait time for entities in the block
scalar

Average wait time for entities in the block.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Average wait, w.
Data Types: double

Port_l — Average store size
scalar

Average size of the store.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Average store size, l.
Data Types: double

Port_ex — Number of entities extracted
scalar

Number of entities that are pulled out of this block.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Number of entities
extracted, ex.
Data Types: double

Parameters
Capacity — Specify the capacity of the storage
25 (default) | scalar

Specify the maximum number of entities contained in the storage.

Programmatic Use
Block Parameter: Capacity
Type: character vector
Values: '25' | scalar

 Entity Store

2-77

Default: '25'

Number of entities departed, d — Outputs the number of entities that have departed
the block
off (default) | on

Selecting this check box outputs the number of entities that have exited the block.

Programmatic Use
Block Parameter: NumberEntitiesDeparted
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Number of entities in block, n — Outputs the number of entities present in the block,
which have yet to depart
off (default) | on

Selecting this check box outputs the number of entities present in the block, which have yet to
depart.

Programmatic Use
Block Parameter: NumberEntitiesInBlock
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Average wait, w — Outputs the average wait time
off (default) | on

Sum of the wait times for entities departing the block divided by their total number. Wait time is the
duration between the Entity Store block entry and exit of an entity. For more information, see
“Interpret SimEvents Models Using Statistical Analysis”.

Programmatic Use
Block Parameter: AverageWait
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Average store size, l — Outputs the average store size
off (default) | on

Accumulated time-weighted average store size. Store size is the number of entities stored in the
block. The block computes average store size by:

1 Multiplying the store size by its duration to calculate time-weighted store size
2 Summing up all time-weighted store sizes and averaging them over total time

For more information, see “Interpret SimEvents Models Using Statistical Analysis”.

2 Blocks

2-78

Programmatic Use
Block Parameter: AverageStoreSize
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Number of entities extracted, ex — Number of entities extracted from this block
off (default) | on

Outputs the number of extracted entities which are pulled out from this block by the Entity Find
block. When an entity is extracted, Number of entities departed, d, Number of entities in block,
n, Average wait, w, and Average store size, l statistics are updated accordingly. For more
information about finding and extracting entities, see “Find and Extract Entities in SimEvents
Models”.

Programmatic Use
Block Parameter: NumEntitiesExtracted
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Version History
Introduced in R2018a

See Also
Entity Queue | Entity Multicast | Entity Server | Composite Entity Creator | Composite Entity Splitter
| Entity Input Switch | Entity Output Switch | Discrete Event Chart | Entity Replicator | Entity
Selector

Topics
“SimEvents Common Design Patterns”
“Match Entities Based on Attributes”

 Entity Store

2-79

Entity Terminator
Terminate entities
Library: SimEvents

Description
The Entity Terminator block accepts and destroys entities. Use this block to represent the entity
departure from the model.

To customize actions when entities enter, use MATLAB code in the Entry action field of the Event
actions tab. See “Events and Event Actions”, for more information.

Ports
Input

Port_1 — Input entity
scalar | vector | matrix

Input entity port for entities entering the terminator.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Output

Port_a — Number of entities arrived
scalar

Number of entities that have arrived at the block.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Number of entities arrived,
a.
Data Types: double

Parameters
Event action — Specify the behavior of the entity in certain events
Entry

Specify the behavior of the entity in certain events. Define the behavior in the Event action
parameter. The Entry action is called just after the entity entry to the block.

Programmatic Use
Block Parameter: EntryAction

2 Blocks

2-80

Type: character vector
Values: MATLAB code
Default: ''

Number of entities arrived, a — Outputs the number of entities that have arrived at
the block
off (default) | on

Number of entities that have arrived at the block.

Programmatic Use
Block Parameter: NumberEntitiesArrived
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Version History
Introduced in R2016a

See Also
Entity Generator | Entity Queue | Entity Server

Topics
“SimEvents Common Design Patterns”

 Entity Terminator

2-81

Hit Crossing
Detect crossing point
Library: Simulink / Discontinuities

Simulink / Messages & Events
HDL Coder / Discontinuities
SimEvents

Description
The Hit Crossing block detects when the input reaches the Hit crossing offset parameter value in
the direction specified by the Hit crossing direction property.

You can configure the block to output a 1 or 0 signal, a message, or a function-call event. See
“Output” on page 2-82 for more information.

Ports
Input

Port_1 — Input signal
scalar | vector

Input signal that the block detects when it reaches the offset in the specified direction.
Data Types: double

Output

Port_1 — Output signal
scalar | vector | message | function-call event

Output indicating if the input signal crossed the hit offset. This port is visible only when you select
the Show output port parameter check box.

Signal Output

If you select the Show output port check box and set the Output type parameter to Signal, the
block output indicates when the crossing occurs.

• If the input signal is exactly the value of the offset value after the hit crossing is detected in the
specified direction, the block continues to output a value of 1.

• If the input signals at two adjacent points brackets the offset value, the block outputs a value of 1
at the second time step.

• If the Show output port check box is not selected, the block ensures that the simulation finds the
crossing point but does not generate output.

• If the initial signal is equal to the offset value, the block outputs 1 only if the Hit crossing
direction property is set to either.

2 Blocks

2-82

• If Boolean logic signals are enabled, then the output is a Boolean.

Message Output

The Hit Crossing block can also output a message when the Output type parameter is set to
Message.

• If the input signal crosses the offset value in the specified direction, the block outputs a message.
• If the input signal reaches the offset value in the specified direction and remains there, block

outputs one message at the hit time and one message when the signal leaves the offset value.
• If the initial input signal is equal to the offset value, the block outputs a message with Crossing

Type value None only if the Hit crossing direction is set to either.

The message output signal is a struct with four fields.

Note If the message output signal crosses model reference boundaries or is used as an input to a
Stateflow chart, you need to create a bus object for the message. See “Tips”.

Function-Call Output

The Hit Crossing block can also output a function-call event when the Output type parameter is set
to Function-Call.

• Each time the input signal crosses the offset value in the specified direction, the block outputs a
single function-call event.

• The function-call event can be sent to the function-call input port of a function-call subsystem or
function-call model.

• The output is equivalent to the output of a Function-Call Generator block at each time step with
the Number of iterations parameter of that block set to 1.

CrossingType — Direction of zero-crossing
None | NegativeToPositive | NegativeToZero | ZeroToPositive | PositiveToNegative |
PositiveToZero | ZeroToNegative

This field shows the direction in which the signal crosses the Hit crossing offset value. Negative,
Zero, and Positive are defined relative to the offset value. The data type is slHitCrossingType
which is an enumerated data type. See “Use Enumerated Data in Simulink Models” for more
information. For example, if HitCrossingOffset is set to 2, a rising signal crossing this offset value
would be recorded as a NegativeToPositive hit crossing.

Note A hit crossing is recorded based on the Hit crossing direction setting. In other words, if you
set Hit crossing direction to detect a falling hit crossing, a NegativeToPositive hit is not
recorded.

Note In a SimEvents block, if the Crossing Type of an entity is a NegativeToPositive
hitcrossing then entity.CrossingType == slHitCrossingType.NegativeToPositive
returns logical 1 (true).

 Hit Crossing

2-83

If the signal reaches the HitCrossingOffset value and holds it, a single NegativeToZero or
PositiveToZero, depending on the direction, hit is registered at the time of the hit crossing.
Data Types: slHitCrossingType

Index — Index of the input signal at which the hit crossing event occurs
nonnegative integer

For n signals being passed to the Hit Crossing block, this field denotes which signal had a hit crossing
event. For a matrix input, this field follows MATLAB linear indexing. See “Array Indexing”.
Data Types: uint32

Time — Time of hit crossing event
real, finite

Time T of the hit crossing event.
Data Types: double

Offset — Hit crossing value for detection
0 (default) | real values

Hit crossing offset value as specified by the “Hit crossing offset” parameter.
Data Types: double

Data Types: double | Boolean | struct

Parameters
Hit crossing offset — Hit crossing value for detection

0 (default) | real values

Specify the value the block detects when the input crosses in the direction specified by Hit crossing
direction.
Programmatic Use
Block Parameter: HitCrossingOffset
Type: character vector
Values: real values
Default: '0'

Hit crossing direction — Input signal direction to hit crossing

either (default) | falling | rising

Direction from which the input signal approaches the hit crossing offset for a crossing to be detected.

When set to either, the block serves as an almost equal block, useful in working around limitations
in finite mathematics and computer precision. Used for these reasons, this block might be more
convenient than adding logic to your model to detect this condition.

When the Hit crossing direction property is set to either and the model uses a fixed-step solver,
the block has the following behavior. If the output signal is 1, the block sets the output signal to 0 at
the next time step, unless the input signal equals the offset value.

2 Blocks

2-84

Programmatic Use
Block Parameter: HitCrossingDirection
Type: character vector
Values: 'either' | 'rising' |'falling'
Default: 'either'

Show output port — Display an output port

off (default) | on

If selected, create an output port on the block icon.

Programmatic Use
Block Parameter: ShowOutputPort
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Output type — Choose signal, message, or function-call output

Signal (default for Simulink) | Message (default for SimEvents) | Function-Call

When Output type is set to Signal, the output signal is set to one whenever the input signal crosses
the Hit crossing offset value in the Hit crossing direction and is zero at other times.

When the Output type is set to Message, the output signal becomes a message.

When Output type is set to Function-Call, the output signal becomes a function-call event.

Programmatic Use
Block Parameter: HitCrossingOutputType
Type: character vector
Values: 'Signal' | 'Message' | 'Function-Call'
Default: 'Signal'

Enable zero-crossing detection — Enable zero-crossing detection

on (default) | off

Select to enable zero-crossing detection. For more information, see “Zero-Crossing Detection”.

Programmatic Use
Parameter: ZeroCross
Type: character vector, string
Values: 'on' | 'off'
Default: 'on'

Block Characteristics
Data Types double
Direct Feedthrough yes
Multidimensional
Signals

no

 Hit Crossing

2-85

Variable-Size Signals no
Zero-Crossing
Detection

yes

Tips
If the Hit Crossing block is configured to output a message and the output signal:

• Crosses into or out of a referenced model
• Is fed to the input of a Stateflow chart

then you need to create a bus object for the message signal. In the MATLAB Command Window, run
Simulink.createHitCrossMessage to check for and, if needed, create a hit crossing message bus
object in the base workspace.

Set the data type of the corresponding port to Bus: HitCrossMessage.

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

Does not support non-floating data type for ert targets.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder™ provides additional configuration options that affect HDL implementation and
synthesized logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

2 Blocks

2-86

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restriction

The Hit crossing direction must be rising or falling.

HDL code generation is not supported when the Output Type is set to Message.

See Also
“Zero-Crossing Detection” | “Implement logic signals as Boolean data (vs. double)”

 Hit Crossing

2-87

MATLAB Discrete-Event System
MATLAB discrete-event system
Library: SimEvents

Description
The MATLAB Discrete-Event System block allows you to create and author custom discrete-event
systems. With this block, you can author an event-driven entity-flow system using MATLAB, and use it
in your Simulink model. For more information about implementing matlab.DiscreteEventSystem
class with MATLAB Discrete-Event System block, see “Create Custom Blocks Using MATLAB
Discrete-Event System Block”.

Below, there are six examples to help you learn how to create custom blocks using the MATLAB
Discrete-Event System block.

1 “Delay Entities with a Custom Entity Storage Block”
2 “Create a Custom Entity Storage Block with Iteration Event”
3 “Custom Entity Storage Block with Multiple Timer Events”
4 “Custom Entity Generator Block with Signal Input and Signal Output”
5 “Build a Custom Block with Multiple Storages”
6 “Create a Custom Resource Acquirer Block”

Parameters
System object name — Specify the full name of the System object
character vector

Specify the full name of the user-defined discrete-event System object class without the file extension.
This entry is case sensitive. The class name must exist on the MATLAB path.

You can specify a discrete-event System object name in one of these ways:

• Enter the name in the text box.
• Click the list arrow attached to the text box. If valid System objects exist in the current folder, the

names appear in the list. Select a System object from this list.
• Browse to a folder that contains a valid discrete-event System object. If the folder is not on your

MATLAB path, the software prompts you to add it.

If you need to create a discrete-event System object, you can create one from a template by clicking
New.

After you save the SimEvents System object, the name appears in the System object name text box.

2 Blocks

2-88

Use the full name of the user-defined discrete-event System object class name. The block does not
accept a MATLAB variable that you have assigned to a discrete-event System object class name.

Programmatic Use
Block Parameter: System
Type: character vector
Values: '<Enter System Class Name>' | character vector
Default: '<Enter System Class Name>'

New — Create a SimEvents System object from a template
SimEvents System object

Click this button to create a SimEvents System object from a template.

Select one of these options.

• Basic

Starts MATLAB Editor and displays a template for a simple discrete-event System object using the
fewest System object methods.

After you save the SimEvents System object, you can enter the name in the System object name
text box.

Simulate using — Specify the simulation mode
Code generation (default) | Interpreted execution

Specify the simulation mode as Code generation or Interpreted execution .

• Interpreted execution

This mode simulates the System object based on the interpreted MATLAB language with
debuggers enabled.

• Code generation

This code generation mode reduces simulation time of SimEvents models. On the first model run,
the MATLAB Discrete-Event System block simulates and generates code using only MATLAB
functions supported for code generation. If the System object code and the block parameters do
not change, subsequent model runs do not regenerate the code. MATLAB Discrete-Event System
blocks also support code reuse for models that have multiple MATLAB Discrete-Event System
blocks using the same System object source file. For more information, see Generate Code for
MATLAB Discrete-Event System Blocks.

Programmatic Use
Block Parameter: SimulateUsing
Type: character vector
Values: 'Code generation' | Interpreted execution
Default: 'Code generation'

Version History
Introduced in R2016a

 MATLAB Discrete-Event System

2-89

See Also
matlab.DiscreteEventSystem | matlab.System | Discrete Event Chart

Topics
“Create Custom Blocks Using MATLAB Discrete-Event System Block”
“Call Simulink Function from a MATLAB Discrete-Event System Block”
“Generate Code for MATLAB Discrete-Event System Blocks”
“SimEvents Common Design Patterns”

2 Blocks

2-90

Receive, Message Receive
Receive messages
Library: Simulink / Messages & Events

SimEvents

Description
The Receive block extracts data from received messages and writes them to the output signal port. If
there are no new messages when the block executes, the block uses the Value source when queue
is empty value. Receive and Message Receive blocks are identical blocks.

• Select Hold last value to hold data read from the last message.
• Select Use initial value to write default data.

Ports
Input

Port_1 — Input message
scalar | vector | matrix

The input port for the message.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Output

Port_S — Show whether a message was received
scalar

Outputs 1 if the block receives a message successfully, and 0 otherwise.

Dependencies

To enable this port, select the check box labeled Show receive status.
Data Types: double

Port_1 — Output signal
scalar | vector | matrix

Output port for the signal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

 Receive, Message Receive

2-91

Parameters
Use internal queue — Select to use an internal queue
on (default for SimEvents) | off (default for Simulink)

Select this check box if you use an internal queue to receive messages.

Programmatic Use
Block Parameter: UseInternalQueue
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Overwrite the oldest element if queue is full — Specify queue overwriting policy
on (default for Simulink) | off (default for SimEvents)

Select this check box to choose between two queue overwriting policies.

• If you select the check box, an incoming message overwrites the oldest if the queue is full.
• If you clear the check box, the block does not accept new messages if the queue is full.

Dependencies

This parameter is visible when you select the box labeled Use internal queue.

Programmatic Use
Block Parameter: QueueOverwriting
Type: character vector
Values: 'on' | 'off'
Default: 'on' (for Simulink) and 'off' (for SimEvents)

Queue length — Specify the length of the message queue
16 (default) | scalar

Specify message queue capacity. The queue length can be specified as a positive integer between 1
and 226-1 (both included).

Dependencies

This parameter is visible when you select the box labeled Use internal queue.

Programmatic Use
Block Parameter: QueueLength
Type: character vector
Values: '16' | scalar
Default: '16'

Queue type — Specify message queue sorting policy
FIFO (default) | LIFO | Priority

The block supports three message sorting policies:

2 Blocks

2-92

• First-in-first-out (FIFO) — The oldest message in the storage departs first.
• Last-in-first-out (LIFO) — The newest message in the storage departs first.
• Priority — Messages or entities are sorted based on their priority.

The priority queue can be used only when the Overwrite the oldest element if queue is full
check box is cleared.

Note Priority queue accepts only non-bus scalar and it does not support fixed point data type.

Dependencies

This parameter is visible when you select the box labeled Use internal queue.

Programmatic Use
Block Parameter: QueueType
Type: character vector
Values: 'FIFO' | 'LIFO' | 'Priority'
Default: 'FIFO'

Priority order — Specify message queue priority
Ascending (default) | Descending

Choose the direction of sorting messages based on priority.

• Ascending — Messages with smaller priority values appear in front of the queue.
• Descending — Messages with greater priority values appear in front of the queue.

Dependencies

This parameter is visible when you select the box labeled Use internal queue andQueue type >
Priority.

Programmatic Use
Block Parameter: PriorityOrder
Type: character vector
Values: 'Ascending' | 'Descending'
Default: 'Ascending'

Show receive status — Show whether a message was received
off (default) | on

Select this check box to show whether a message was received. If this check box is selected the block
outputs 1 if it receives a message successfully, and 0 otherwise.

Programmatic Use
Block Parameter: ShowQueueStatus
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Initial value — Set initial data value
[](unspecified) (default) | scalar | vector | matrix

 Receive, Message Receive

2-93

Enter an initial data value for the queue before the arrival of the first message. The default value []
(unspecified) is treated as 0 with data type double.

To use this block to initialize a nonvirtual bus signal, specify the initial value as a MATLAB structure.
For more information about initializing nonvirtual bus signals using structures, see “Specify Initial
Conditions for Bus Elements”.

Programmatic Use
Block Parameter: InitialValue
Type: character vector
Values: '[]' | scalar
Default: '[]'

Value source when queue is empty — Value source for empty queue
Hold last value (default) | Use initial value

Specify the value to receive when received message queue is empty.

• Hold last value (default) — Holds data read from the last message.

Initially, if the block tries to receive a message and fails, it outputs the initial value.
• Use initial value — Writes default data.

Dependencies

This parameter is visible when you select the box labeled Use internal queue.

Programmatic Use
Block Parameter: ValueSourceWhenQueueIsEmpty
Type: character vector
Values: 'Hold last value' | 'Use initial value'
Default: 'Hold last value'

Sample time (-1 for inherited) — Specify the time interval between samples
-1 (default) | scalar

To inherit the sample time, set this parameter to -1. See “Specify Sample Time” for more
information.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: '-1' | scalar
Default: '-1'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | integer |

single | string
Direct Feedthrough no

2 Blocks

2-94

Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Message Send

Topics
“Simulink Messages Overview”
“SimEvents Common Design Patterns”

 Receive, Message Receive

2-95

Send, Message Send
Create and send message
Library: Simulink / Messages & Events

SimEvents

Description
The Send block reads the value of an input signal, and sends a message that carries this value. In
message-based communication, a message is a discrete-item of interest that carry data of any type
that Simulink supports. Send and Message Send blocks are identical blocks.

Ports
Input

Port_Enable — External enable signal
scalar

Input port to enable the block to send a message. For any input value that is greater than 0 send is
enabled. For any value less than or equal to 0, the send is disabled.

Dependencies

To enable this port, select the box labeled Show enable port.
Data Types: double

Port_1 — Input signal
scalar | vector | matrix

This block accepts inputs of any type that Simulink supports, including enumerated types and
converts the input signal to a message. For more information, see “Data Types Supported by
Simulink”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Output

Port_1 — Output message
scalar | vector | matrix

The block outputs a message with constant priority 20.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

2 Blocks

2-96

Parameters
Show enable port — Display the enable port
off (default) | on

Select this check box to display enable port. For any input value that is greater than 0 send is
enabled. For any value less than or equal to 0, the send is disabled.

Programmatic Use
Block Parameter: ShowEnablePort
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | integer |

single | string
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Message Receive

Topics
“Simulink Messages Overview”
“SimEvents Common Design Patterns”
“Generate Entities When Events Occur”
“Enable a Gate for a Time Interval”

 Send, Message Send

2-97

Entity Transport Delay
Introduce a delay in propagation of a SimEvents message
Library: Simulink / Continuous

SimEvents

Description
The Entity Transport Delay block delays an entity for a period of time, named transport delay. The
first input is the entity that is transported from point A to point B on a constant-length moving surface
whose speed changes over time. The value from the second input is the instantaneous delay. The
speed of the surface is the reciprocal of instantaneous delay. The product of instantaneous delay and
the speed is 1.

The block calculates the implemented transport delay by the distance-speed-time relationship, where
the surface length (distance) is equal to the integral of the variable surface speed over the duration of
the transport delay (time). For more information about this calculation, see Variable Transport Delay.

The Entity Transport Delay block connects SimEvents to Simulink using the input from a Simulink
signal and computing the transport delay as a continuous process, and applying this delay to an entity
in a discrete-event process. For an example that uses the Entity Transport Delay block, see “Modeling
Cyber-Physical Systems”.

Ports
Input

Port_1 — Input entity
SimEvents entity

SimEvents entity or message. For more information on entities in SimEvents, see “Entities in a
SimEvents Model”.

ti — Instantaneous delay
scalar | vector | matrix

Instantaneous delay in the transport of the SimEvents entity. ti is the reciprocal of the speed of the
entity. For more information on the calculation of instantaneous delay, see “Variable Transport Delay”.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | bus

Output

Port_1 — Delayed entity
SimEvents entity

SimEvents entity with the instantaneous delay ti applied to it.

2 Blocks

2-98

n — Number of delayed entities
real scalar

Secondary output signal of the block, which displays the number of entities processed in a time step.

Dependencies

To enable this port, enable the Output number of entities in block, n parameter
Data Types: double

Parameters
Capacity — Specify the capacity of the block

inf (default) | scalar

Specify capacity to accept entities to be delayed.

Programmatic Use
Block Parameter: Capacity
Type: character vector
Values: 'inf' | real scalar
Default: 'inf'

Output number of entities in block, n — Outputs the number of delayed entities
present in the block

off (default) | on

Number of entities present in the block that are being delayed.

Programmatic Use
Block Parameter: ShowNumberEntitiesInBlock
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | integer |

single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

yes

Version History
Introduced in R2019b

 Entity Transport Delay

2-99

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Receive | Send | Transport Delay | Variable Transport Delay

Topics
“Establish Message Send and Receive Interfaces Between Software Components”

2 Blocks

2-100

Multicast Receive Queue
Receive multicast entities
Library: SimEvents

Description
The Multicast Receive Queue block is identical to an Entity Queue block with the Entity arrival
source parameter set to Multicast. For information about parameter descriptions, see the
documentation for the Entity Queue on page 2-51 block.

You specify a Multicast tag for receiving entities. Then the block receives entities with a matching
Multicast tag broadcast by the Entity Multicast block. See “Overview of Queues and Servers in
Discrete-Event Simulation”, for more information about using multicast mode to broadcast entities.

Ports
Input

receive — Receive broadcasted entity
scalar | vector | matrix

Input for received entities.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | string | fixed point

Output

Port_1 — Output entity
scalar | vector | matrix

Output entity at the head of the queue to depart when a downstream block is ready to accept it.

Note Event actions are not supported with string entity data type

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | string | fixed point

Version History
Introduced in R2016a

See Also
Entity Generator | Entity Server | Entity Multicast | Entity Store | Entity Selector

 Multicast Receive Queue

2-101

Topics
“Overview of Queues and Servers in Discrete-Event Simulation”
“Storage with Queues”
“SimEvents Common Design Patterns”

2 Blocks

2-102

Resource Acquirer
Acquire entity resources
Library: SimEvents

Description
The Resource Acquirer block acquires for and assigns them to input entities. You can specify which
resource amounts and type the block acquires.

An entity does not depart the Resource Acquirer block until the entity acquires all of the requested
resources. For example, if an entity requests 5 resources and there are 2 resources available in a
Resource Pool block, then the entity waits until all the requested resources are available before
exiting. Similarly, if an entity requests 2 resources from one type and 3 resources from another type,
the entity waits until all of the resources from both types are available.

Initialize a Resource Pool block with a specified amount of available resources. Then:

• Use one or more Resource Acquirer blocks to reserve those resources.

The priority order of Resource Acquirer blocks is determined at the beginning of a simulation and
cannot be customized. The entity in the higher priority Resource Acquirer block always acquires
the resource first.

For example, suppose only 1 resource is available in the Resource Pool block and Resource
Acquirer1 is higher priority than Resource Acquirer2. If Entity1 and Entity2 want to acquire the
resource at the same time, Entity1 always acquires the resource. Even if the resource becomes
available again and there are two entities Entity1 and Entity2 waiting in the ResourceAcquirer1
and ResourceAcquirer2, Entity1 again acquires the resource.

• Use a Resource Releaser block to return resources to the Resource Pool block for future use.

 Resource Acquirer

2-103

The visibility of the resources is determined by the Resource visibility parameter of the Resource
Pool blocks in the model.

To customize actions when entities enter, exit, or are blocked, enter MATLAB code in the Entry
action, Exit action, or Blocked action field of the Event actions tab.

Available Resources

Use the Available Resources controls to:

• Select the resources from the resources defined in all the Resource Pool blocks in the model.
• Add the resources to the Selected Resources table, where you can configure resource

acquisition details.

The list displays all the available resources in the model. (If there are no resources, the Available
Attributes list is empty.)

If the resource list is long, you can type the resource name in the text box to filter the list.

Use the buttons in the Available Resources section to help build the resources table. The buttons
perform these actions.

Button Action
Refresh the Available Resources list. The list updates with any upstream
model changes you make while the block dialog box is open.

Add the selected resources to the Selected Resources table.

Move the selected resource from the Selected Resources table to the
Available Resources list.

Note If the selected resource is one you added manually, this button appears
dimmed.

The message area below the available resources list displays additional messages about the
resources, as they apply.

Message Meaning
> Resource already selected You have already added the resource to the

Selected Resources table. You cannot add the
resource to the table again.

Selected Resources

Use the controls under Selected Resources to build and manage the list of resources to attach to
the entity. Each resource appears as a row in a table.

Using these controls, you can:

• Add a resource manually.
• Modify a resource that you added to the table from the Available Resources list to attach to the

entity.

2 Blocks

2-104

The buttons under Selected Resources perform these actions:

Button Action Notes
Add a template resource to the
table.

Rename the resource and specify
its properties.

Add a copy of the selected resource
to the table to use as the basis of a
new resource.

Rename the copy. Two resources
cannot have the same name.

Remove the selected resource from
the Selected Resources table.

When you delete a resource this
way, no confirmation appears and
you cannot undo the operation.

Move up the selected resource in
order in the Selected Resources
table.

N/A

Move the selected resource down
in order in the Selected
Resources table.

N/A

Note If you delete a row and apply the change, the deletion can affect signal output ports
corresponding to other attributes. For example, if the block has a signal output port A2 and you
delete the attribute with a port marked A1, the block relabels A2 as A1. Verify that any signal that
connects to the relabeled port is still connected as you expect.

Property Specify Use
Name The name of the resource. Each

resource must have a unique
name.

Double-click the existing name,
and then type the new name.

Amount Source Whether the resource amount,
that an entity requests, comes
from the dialog box or an
attribute.

Select Dialog or Attribute. If
you select Attribute, the
source of the resource amount
comes from the attribute of the
entity. This option allows each
entity to acquire varying amounts
of resources. For more
information, see “Set Resource
Amount with Attributes”

 Resource Acquirer

2-105

Property Specify Use
Amount The value to assign to the

resource (when the resource
comes from the dialog box).

Double-click the value, and then
type the value you want to
assign.

This value is the number of
resources acquired per entity.
For example, if Amount is 3,
each entity that arrives at the
Resource Acquire block must
wait to acquire 3 resources
before departing the block.

Granularity of the resources to
be acquired matches the
granularity of the resources in
the Resource Pool block.

Ports
Input

Port_1 — Input entity
scalar | vector | matrix

Input entity port for entities entering the block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Output

Port_1 — Output entity
scalar | vector | matrix

Output entity port for entities exiting the block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Port_d — Number of entities that have departed the block
scalar

Number of entities that have departed the block.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Number of entities
departed, d.
Data Types: double

Port_n — Number of entities that have not yet departed the block
scalar

2 Blocks

2-106

Number of entities that have not yet departed the block.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Number of entities in block,
n.
Data Types: double

Port_w — Average wait time for entities in the block
scalar

Average wait time for entities in the block.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Average wait, w.
Data Types: double

Port_ex — Number of entities extracted
scalar

Number of entities that are pulled out of this block.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Number of entities
extracted, ex.
Data Types: double

Parameters
Maximum number of waiting entities — Maximum number of entities that can wait for a
resource
1 (default) | scalar

Enter the maximum number of entities that can wait for a resource.

Programmatic Use
Block Parameter: NumberWaitingEntities
Type: character vector
Values: '1' | scalar
Default: '1'

Event actions — Specify the behavior of the entity on certain events
Entry (default) | Exit | Blocked

Define the behavior in the Event actions. For example, the Entry action is called when an entity
enters the block.

Note If an event action changes an entity, related block behavior such as resorting a priority queue,
and rescheduling of any events, will occur after the event action has fully finished and returned.

 Resource Acquirer

2-107

Programmatic Use
Block Parameter: EntryAction, ExitAction, BlockedAction
Type: character vector
Values: MATLAB code
Default: ''

Number of entities departed, d — Outputs the number of entities that have departed
the block
off (default) | on

Selecting this check box outputs the number of entities that have exited the block.
Programmatic Use
Block Parameter: NumberEntitiesDeparted
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Number of entities in block, n — Outputs the number of entities present in the block,
which have yet to depart
off (default) | on

Selecting this check box outputs the number of entities present in the block, which have yet to
depart.
Programmatic Use
Block Parameter: NumberEntitiesInBlock
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Average wait, w — Outputs the average wait time
off (default) | on

Sum of the wait times for entities departing the block divided by their total number. Wait time is the
duration between the entity's entry into and exit from the Resource Acquirer block. For more
information, see “Interpret SimEvents Models Using Statistical Analysis”.
Programmatic Use
Block Parameter: AverageWait
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Number of entities extracted, ex — Number of entities extracted from this block
off (default) | on

Outputs the number of extracted entities which are pulled out from this block by the Entity Find
block. When an entity is extracted, its resource acquisition from the Resource Pool block is canceled
and Number of entities departed, d, Number of entities in block, n, and Average wait, w
statistics are updated accordingly. For more information about finding and extracting entities, see
“Find and Extract Entities in SimEvents Models”.

2 Blocks

2-108

Programmatic Use
Block Parameter: NumEntitiesExtracted
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Version History
Introduced in R2016a

See Also
Entity Generator | Resource Releaser | Resource Pool

Topics
“Model Using Resources”
“SimEvents Common Design Patterns”

 Resource Acquirer

2-109

Resource Pool
Pool entity resources
Library: SimEvents / Entity Management

SimEvents

Description
The Resource Pool block defines resources that entities can use during model simulation. Use the
Resource Acquirer and Resource Releaser blocks to work with these resources.

Initialize the block with the specified amount of available resources. Then:

• Use one or more Resource Acquirer blocks to reserve those resources.
• Use a Resource Releaser block to return resources back to this block for future use.

You can determine the visibility of available resources in a model hierarchy. You can choose Global
or Scoped resources in the pool.

• Global — Resources can be referenced from anywhere in a model hierarchy.
• Scoped — Resources are locally visible and can be referenced only from the subsystem that

contains the Resource Pool block and all the subsystems inside.

Ports
Input

Port_1 — Change resource amount
scalar | vector | matrix

Input entity port for changing resource amount. The input cannot be a negative value.

Dependencies

To enable this port, select the Change amount through control port as the Resource amount
source.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Output

Port_u — Outputs the number of resources that are in use
scalar

Number of resources that are in use.

2 Blocks

2-110

Dependencies

To enable this port, click the Statistics tab and select the box labeled Amount in use, u.
Data Types: double

Port_util — Outputs the average time the pool is utilized
scalar

Average wait time the pool is utilized.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Average utilization, util.
Data Types: double

Port_avail — Outputs the number of resources that are available
scalar

Number of resources that are available.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Amount available, avail.
Data Types: double

Parameters
Resource name — Name for the resources in the pool
Resource1 (default) | character vector

Enter name of entity resource.

Programmatic Use
Block Parameter: ResourceName
Type: character vector
Values: 'Resource1' | character vector
Default: 'Resource1'

Resource granularity — Select granularity of resource use
Discrete unit (default) | Fractional amount

Select granularity of resource use.

• Discrete unit — Use whole number increment.
• Fractional amount — Use fractional increment.

Programmatic Use
Block Parameter: ResourceGranularity
Type: character vector
Values: 'Discrete unit' | 'Fractional amount'
Default: 'Discrete unit'

 Resource Pool

2-111

Reusable upon release — Specify if the resource is reusable upon release
off (default) | on

• Select this check box to allow this resource to return to the resource pool upon release. An
example of such a resource is a table in a restaurant, which is available for reuse when a customer
leaves.

• Clear this check box to prevent this resource from returning to the resource pool upon release. In
this case, when the resource is released, it is no longer available in the resource pool. An example
of such a resource is food in a restaurant, which is not reusable upon consumption.

Programmatic Use
Block Parameter: ReusableUponRelease
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Resource amount source — Select resource amount source
Dialog (default) | Change amount through control port

Select resource amount source.

• Dialog
• Change amount through control port

Select this option to enable an input entity port and a variable capacity resource. The payload of
the arriving message increments the existing number of resources for the block. For example, if
the resource pool has five resources, and a message with a payload of three arrives at the input
port, the block has eight resources available. The number of resources cannot decrement.

Programmatic Use
Block Parameter: ResourceAmountSource
Type: character vector
Values: 'Dialog' | 'Change amount through control port'
Default: 'Dialog'

Resource amount — Set the amount of resource
10 (default) | scalar

Enter amount of resource.
Dependencies

Select the Dialog to enable the Resource amount source.
Programmatic Use
Block Parameter: ResourceAmount
Type: character vector
Values: '10' | scalar
Default: '10'

Initial resource amount — Enter initial amount of resource
10 (default) | scalar

2 Blocks

2-112

Enter initial amount of resource.

Dependencies

Select the Change amount through control port to enable the Resource amount source.

Programmatic Use
Block Parameter: InitialResourceAmount
Type: character vector
Values: '10' | scalar
Default: '10'

Resource visibility — Select the availability of the resources
Global (default) | Scoped

Choose the behavior of the resources acquired from this pool as Global or Scoped.

When Global is selected:

• Resource pool names must be unique in the model.
• All resources have global scope and they can be referenced from anywhere in a model hierarchy.
• An entity carrying a resource acquired from this block, must explicitly relinquish the resource.
• When an entity is destroyed, the resources that are associated with it are returned to the pool, if

the Reusable upon release check box is selected.

When Scoped is selected:

• Resources are locally visible and can be referenced only from the subsystem that contains the
Resource Pool block and all the subsystems inside.

• Resource pool names must be unique within the model hierarchy where the Resource Pool block is
visible.

• An entity carrying the resource acquired from this block, must explicitly relinquish the resource.
• When an entity leaves the scope, any resources that are local to that scope and not already

released, are automatically released. If Reusable upon release check box is selected, they are
returned to the pool.

Programmatic Use
Block Parameter: InitialResourceAmount
Type: character vector
Values: '10' | scalar
Default: '10'

Amount in use, u — Number of resources that are in use
off (default) | on

Outputs the amount of resources that the block has acquired and has not yet released. For example, if
the resource pool has 10 resources, and the entity acquires all of them, this port shows 10. When the
block releases the resources, this port shows 0.

 Resource Pool

2-113

Programmatic Use
Block Parameter: AmountInUse
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Average utilization, util — Outputs the average resource utilization
off (default) | on

Outputs the average resource utilization.

Programmatic Use
Block Parameter: AverageUtilization
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Amount available, avail — Outputs the amount of resources available
off (default) | on

Outputs the amount of resources available.

Programmatic Use
Block Parameter: AmountAvailable
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Version History
Introduced in R2016a

See Also
Entity Generator | Resource Acquirer | Resource Releaser

Topics
“Model Using Resources”
“SimEvents Common Design Patterns”

2 Blocks

2-114

Resource Releaser
Release entity resources
Library: SimEvents

Description
The Resource Releaser block releases resources when an entity enters the block. The block accepts
one entity and the entity departs the block immediately provided it is accepted by the next block or
extracted by the Entity Find block.

You can specify that the block release certain resource types or release all resources.

Available Resources

Use the Available Resources controls to:

• Select the resources from the resources defined in all the Resource Pool blocks in the model.
• Add the resources to the Selected Resources table, where you can modify them.

The list displays all the resources in the model. (If there are no resources, the Available Resources
list is empty).

If the resource list is long, you can type the resource name in the text box to filter the list.

Use the buttons in the Available Resources section to help build the resources table. The buttons
perform these actions.

Button Action
Refresh the Available Resources list. The list updates with any upstream
model changes you make while the block dialog box is open.

Add the selected resources to the Selected Resources table.

Move the selected resource from the Selected Resources table to the
Available Resources list.

If the selected resource is one you added manually, this button appears
dimmed.

The message area below the available resources list displays additional messages about the
resources, as they apply.

 Resource Releaser

2-115

Message Meaning
> Resource already selected You have already added the resource to the

Selected Resources table. You cannot add the
resource to the table again.

Selected Resources

Use the controls under Selected Resources to build and manage the list of resources to release.
Each resource appears as a row in a table.

Using these controls, you can:

• Add a resource manually.
• Modify a resource that you added to the table from the Available Resources list to release.
• Choose the amount of resources to be released by setting the Amount Source parameter to

Dialog or Attribute.

• Dialog — Specify the amount of resources to be released under the Amount column.
• Attribute — Specify the name of the attribute that defines the amount of resources to be

released.

The buttons under Selected Resources perform these actions.

Button Action Notes
Add a template resource to the
table.

Rename the resource and specify
its properties.

Add a copy of the selected resource
to the table to use as the basis of a
new resource.

Rename the copy. Two resources
cannot have the same name.

Remove the selected resource from
the Selected Resources table.

When you delete a resource this
way, no confirmation appears and
you cannot undo the operation.

Move up the selected resource in
order in the Selected Resources
table.

N/A

Move the selected resource down
in order in the Selected
Resources table.

N/A

Note If you delete a row and apply the change, the deletion can affect signal output ports
corresponding to other attributes. For example, if the block has a signal output port A2 and you
delete the attribute with a port marked A1, the block relabels A2 as A1. Verify that any signal that
connects to the relabeled port is still connected as you expect.

2 Blocks

2-116

Property Specification Usage
Name The name of the resource. Each

resource must have a unique
name.

Double-click the existing name,
and then type the new name.

Amount Source Whether the resource amount,
that an entity requests, comes
from the dialog box or an
attribute.

Select Dialog or Attribute. If
you select Attribute, the
source of the resource amount
comes from the attribute of the
entity. This option allows each
entity to acquire varying amounts
of resources. For more
information, see “Set Resource
Amount with Attributes”.

Amount The value to assign to the
resource (when the resource
comes from the dialog box).

Double-click the value, and then
type the value you want to
assign.

This value is the number of
resources released per entity. For
example, if Amount is three,
each entity that arrives at the
Resource Releaser block must
wait to release 3 resources
before departing the block.

Granularity of the resources to
be released matches the
granularity of the resources in
the Resource Pool block.

Ports
Input

Port_1 — Input entity
scalar | vector | matrix

Input entity port for entities entering the block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Output

Port_1 — Output entity
scalar | vector | matrix

Output entity port for entities exiting the block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

 Resource Releaser

2-117

Port_d — Number of entities that have departed the block
scalar

Number of entities that have departed the block.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Number of entities
departed, d.
Data Types: double

Port_n — Number of entities that have not yet departed the block
scalar

Number of entities that have not yet departed the block.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Number of entities in block,
n.
Data Types: double

Port_ex — Number of entities extracted
scalar

Number of entities that are pulled out of this block.

Dependencies

To enable this port, click the Statistics tab and select the box labeled Number of entities
extracted, ex.
Data Types: double

Parameters
Resource to release — Select the resources to release
All (default) | Selected

Select the resources to release.

• All

Release the use of all resources for a passing entity.
• Selected

Release selected resources. Selecting this option enables the Available Resources table.

Programmatic Use
Block Parameter: ResourceToRelease
Type: character vector
Values: 'All' | 'Selected'
Default: 'All'

2 Blocks

2-118

Event actions — Specify the behavior of the entity on certain events
Entry (default) | Exit | Blocked

Define the behavior in the Event actions. For example, the Entry action is called when an entity
enters the block.

Programmatic Use
Block Parameter: EntryAction, ExitAction, BlockedAction
Type: character vector
Values: MATLAB code
Default: ''

Number of entities departed, d — Outputs the number of entities that have departed
the block
off (default) | on

Selecting this check box outputs the number of entities that have exited the block.

Programmatic Use
Block Parameter: NumberEntitiesDeparted
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Number of entities in block, n — Outputs the number of entities present in the block,
which have yet to depart
off (default) | on

Selecting this check box outputs the number of entities present in the block, which have yet to
depart.

Programmatic Use
Block Parameter: NumberEntitiesInBlock
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Number of entities extracted, ex — Number of entities extracted from this block
off (default) | on

Number of extracted entities that are pulled out from this block by the Entity Find block. For more
information about finding and extracting entities, see “Find and Extract Entities in SimEvents
Models”.

Programmatic Use
Block Parameter: NumEntitiesExtracted
Type: character vector
Values: 'on' | 'off'
Default: 'off'

 Resource Releaser

2-119

Version History
Introduced in R2016a

See Also
Entity Generator | Resource Acquirer | Resource Pool

Topics
“Model Using Resources”
“SimEvents Common Design Patterns”

2 Blocks

2-120

Sequence Viewer
Display messages, events, states, transitions, and functions between blocks during simulation
Library: Simulink / Messages & Events

Simulink Test
SimEvents
Stateflow

Description
The Sequence Viewer block displays messages, events, states, transitions, and functions between
certain blocks during simulation. The blocks that you can display are called lifeline blocks and
include:

• Subsystems
• Referenced models
• Blocks that contain messages, such as Stateflow charts
• Blocks that call functions or generate events, such as Function Caller, Function-Call Generator,

and MATLAB Function blocks
• Blocks that contain functions, such as Function-Call Subsystem and Simulink Function blocks

To see states, transitions, and events for lifeline blocks in a referenced model, you must have a
Sequence Viewer block in the referenced model. Without a Sequence Viewer block in the referenced
model, you can see only messages and functions for lifeline blocks in the referenced model.

Note The Sequence Viewer block does not display function calls generated by MATLAB Function
blocks and S-functions.

Parameters
Time Precision for Variable Step — Digits for time increment precision
3 (default) | scalar

Number of digits for time increment precision. When using a variable step solver, change this
parameter to adjust the time precision for the sequence viewer. By default the block supports 3 digits
of precision.

Suppose the block displays two events that occur at times 0.1215 and 0.1219. Displaying these two
events precisely requires 4 digits of precision. If the precision is 3, then the block displays two events
at time 0.121.

Programmatic Use
Block Parameter: VariableStepTimePrecision

 Sequence Viewer

2-121

Type: string scalar or character vector
Values: "3" | scalar
Default: "3"

History — Maximum number of previous events to display
5000 (default) | scalar

Total number of events before the last event to display.

For example, if History is 5 and there are 10 events in your simulation, then the block displays 6
events, including the last event and the five events prior the last event. Earlier events are not
displayed. The time ruler is greyed to indicate the time between the beginning of the simulation and
the time of the first displayed event.

Each send, receive, drop, or function call event is counted as one event, even if they occur at the
same simulation time.

Programmatic Use
Block Parameter: History
Type: string scalar or character vector
Values: "1000" | scalar
Default: "1000"

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | integer |

single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2015b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block can be used for visualizing message transitions during simulation, but is not included in
the generated code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

2 Blocks

2-122

This block displays messages during simulation when used in subsystems that generate HDL code,
but it is not included in the hardware implementation.

See Also
Tools
Sequence Viewer

Topics
“Use the Sequence Viewer to Visualize Messages, Events, and Entities”

 Sequence Viewer

2-123

SimEvents Debugger
Debug SimEvents models
Library: SimEvents

Description
The SimEvents Debugger block enables the debugger for your SimEvents model. Using this block,
you can:

• Inspect entities and their attribute values in storage blocks
• Set breakpoints on blocks and events
• Watch entities

Note The SimEvents debugger is a preliminary version.

To start debugging your model:

1 From the SimEvents Library, add the SimEvents Debugger block into your SimEvents model.
2 In the Simulink Editor, click the Step Forward button.

The debugger interface appears.

2 Blocks

2-124

•
Click the Continue simulation button () to begin the simulation in the debugger. When the
simulation completes, the debugger interface closes.

• To explore their data and behavior, the model tree displays in the left pane. Select the elements in
the tree.

• When done, on the Simulink editor, click the Stop button to stop the simulation.

Inspect Entities

To inspect entities in the debugger:

• To step to the next time step and inspect entities, in the Simulink editor, click the Step Forward
button again. This action skips over all events at tnow.

•
To step to the next event and inspect entities, in the debugger, click .

• To set a breakpoint:

• At a particular time, use the Simulation Stepper to set breakpoints.
• At an event on the event calendar, in the debugger, in the left pane, click an event calendar.
• At every event, in the debugger, in the left pane, select the event calendar. In the Event

Calendar Events pane, select the Break before event execution check box.
• When an entity enters a block, in the debugger, select the block. At the bottom of the Inspector

pane, select the Break upon entry check box.
• When an entity leaves a block, in the debugger, select the block. At the bottom of the Inspector

pane, select the Break prior to entity exit check box.
•

To go to a breakpoint, in the debugger, click the Continue button ().

Note When you stop the debugger at a breakpoint, the Simulink editor and the MATLAB
Command Window appear unresponsive. However, you can inspect entities, set new breakpoints,
and continue the simulation from the debugger window.

• To watch entities, in the left tree, click the block. In the Inspector pane, select the check box of
the entity you want to watch.

Parameters
Enable debugger — Enable the debugger
on (default) | off

Select this check box to enable the debugger for your model.

Version History
Introduced in R2016a

See Also
Entity Generator | Entity Queue

 SimEvents Debugger

2-125

Topics
“Debug SimEvents Models”
“Simulation Stepper”
“Visualization and Animation for Debugging”

2 Blocks

2-126

Configuration Parameters

• “SimEvents Pane” on page 3-2
• “SimEvents Diagnostics Pane” on page 3-6

3

SimEvents Pane

Note These configuration parameters are obsolete. They are available only for SimEvents releases
prior to R2016a.

In this section...
“SimEvents Pane Overview” on page 3-2
“Execution order” on page 3-2
“Seed for event randomization” on page 3-3
“Maximum events per block” on page 3-4
“Maximum events per model” on page 3-4
“Prevent duplicate events on multiport blocks and branched signals” on page 3-5

SimEvents Pane Overview

Note These configuration parameters are obsolete. They are available only for SimEvents releases
prior to R2016a.

Configure modelwide parameters related to discrete-event simulation and the logging of events and
entities.

Configuration

This pane appears only if your model contains a SimEvents block.

Execution order

Note These configuration parameters are obsolete. They are available only for SimEvents releases
prior to R2016a.

3 Configuration Parameters

3-2

Select an algorithm for determining the sequence for processing simultaneous events having equal
priorities.

Settings

Default: Arbitrary

Arbitrary
Causes the simulation to use an internal algorithm to determine the sequence for processing
simultaneous events having equal priorities.

Randomized
Causes the simulation to assign equal probability to all possible execution sequences of
simultaneous events having equal numerical priorities.

Tip

The processing sequence might be different from the sequence in which the events were scheduled
on the event calendar.

Dependency

Selecting Randomized enables Seed for event randomization.

Command-Line Information
Parameter: propIdentEvents
Type: double
Value: 0 | 1
Default: 0

Seed for event randomization

Note These configuration parameters are obsolete. They are available only for SimEvents releases
prior to R2016a.

Initialize the random number generator for event processing.

Settings

Default: 123456789

Minimum: 0

Maximum: 2^31-1

This is a number that initializes the random number generator used to determine the sequence for
processing simultaneous events having equal priorities.

Tips

• For a given value of this parameter, the output of the random number generator is repeatable.

 SimEvents Pane

3-3

• To avoid unexpected correlations, make the value of this parameter distinct from all other seed
parameters in the model (for example, the Initial seed parameter in the Event-Based Random
Number block).

Dependency

This parameter is enabled by Execution order.

Command-Line Information
Parameter: propIdentEventSeed
Type: string
Value:
Default: '123456789'

Maximum events per block

Note These configuration parameters are obsolete. They are available only for SimEvents releases
prior to R2016a.

Limit the number of entity generation, service completion, subsystem execution, and function-call
events that each SimEvents block performs at each fixed time instant.

Settings

Default: 1000

Minimum: 2

Maximum: 2^31-1

Command-Line Information
Parameter: propMaxDesBlkSimulEvents
Type: string
Value:
Default: '1000'

Maximum events per model

Note These configuration parameters are obsolete. They are available only for SimEvents releases
prior to R2016a.

Limit the total number of events scheduled via the event calendar at each fixed time instant. This is
the maximum number of events per discrete-event system in a model.

Settings

Default: 100000

3 Configuration Parameters

3-4

Minimum: 2

Maximum: 2^31-1

Command-Line Information
Parameter: propMaxDesMdlSimulEvents
Type: string
Value:
Default: '100000'

Prevent duplicate events on multiport blocks and branched signals

Note These configuration parameters are obsolete. They are available only for SimEvents releases
prior to R2016a.

Prevent multifiring behavior on multiport blocks or branched signals that results in duplication of
events. Multifiring behavior, an implicit result of the way that the software executes particular block
configurations, occurs when the software executes a block more than once in response to a single,
discrete event in the simulation.

Settings

Default: On

 On
Enable Prevent duplicate events on multiport blocks and branched signals parameter to
prevent multifiring behavior.

 Off
Allow multifiring behavior on multiport blocks or branched signals.

Command-Line Information
Parameter: propPreventDuplicateEvents
Type: integer or boolean
Value:
Default: '1' for integer, 'True' for boolean

See Also

More About
• “SimEvents Diagnostics Pane” on page 3-6

 SimEvents Pane

3-5

SimEvents Diagnostics Pane

Note These configuration parameters are obsolete. They are available only for SimEvents releases
prior to R2016a.

In this section...
“Diagnostics Pane Overview” on page 3-6
“Attribute output delayed relative to entities” on page 3-7
“Response to function call delayed relative to entities” on page 3-8
“Statistical output delayed relative to entities” on page 3-9
“Modification of attribute values used for decision making” on page 3-10
“Identical seeds for random number generators” on page 3-11

Diagnostics Pane Overview

Note These configuration parameters are obsolete. They are available only for SimEvents releases
prior to R2016a.

Specify what diagnostic action the application should take, if any, when it detects situations that
might cause problems or unexpected results in the simulation.

Configuration

This pane appears only if your model contains a SimEvents block.

Tips

• The options are typically to do nothing or to display a warning or an error message.
• A warning does not terminate a simulation, but an error does.

3 Configuration Parameters

3-6

Attribute output delayed relative to entities

Note These configuration parameters are obsolete. They are available only for SimEvents releases
prior to R2016a.

Select the diagnostic action to take if the application detects a situation in which a Get Attribute
block updates a signal during entity advancement, but a subsequent block responds to the signal
update after the entity has arrived. The application's processing sequence might cause the latter
block to process the entity using outdated signal values.

Settings

Default: error

none
The application does not check for this situation.

warning
When the application detects this situation, it displays a warning.

error
When the application detects this situation, it terminates the simulation and displays an error
message.

Tip

A Single Server block whose Service time parameter is 0 can address the problem by storing the
entity while the latter block responds to the signal update.

Example 3.1. Example of Solution

Alternatively, you might be able to address the problem by using an attribute directly instead of by
using the signal output of a Get Attribute block.

Command-Line Information
Parameter: propDiagAttribOutput
Type: double
Value: 0 | 1 | 2
Default: 2

 SimEvents Diagnostics Pane

3-7

Recommended Settings

Application Setting
Debugging warning or error
Efficiency none

Response to function call delayed relative to entities

Note These configuration parameters are obsolete. They are available only for SimEvents releases
prior to R2016a.

Select the diagnostic action to take if the application detects a situation in which a block issues a
function call during entity advancement, but subsequent blocks respond to the function call and its
consequences after the entity has arrived. The application's processing sequence might cause
subsequent blocks to process the entity using outdated values of a signal whose update is a
consequence of the function call.

Settings

Default: error

none
The application does not check for this situation.

warning
When the application detects this situation, it displays a warning.

error
When the application detects this situation, it terminates the simulation and displays an error
message.

Tip

A Single Server block whose Service time parameter is 0 can address the problem by storing the
entity while subsequent blocks respond to the function call and its consequences.

Example 3.2. Example of Solution

3 Configuration Parameters

3-8

Command-Line Information
Parameter: propDiagFcnCallOutput
Type: double
Value: 0 | 1 | 2
Default: 2

Recommended Settings

Application Setting
Debugging warning or error
Efficiency none

Statistical output delayed relative to entities

Note These configuration parameters are obsolete. They are available only for SimEvents releases
prior to R2016a.

Select the diagnostic action to take if the application detects a situation in which a block updates a
statistical output signal during entity advancement, but a subsequent block responds to the signal
update after the entity has arrived. The application's processing sequence might cause the latter
block to process the entity using outdated signal values.

Settings

Default: error

none
The application does not check for this situation.

warning
When the application detects this situation, it displays a warning.

error
When the application detects this situation, it terminates the simulation and displays an error
message.

Tip

A Single Server block whose Service time parameter is 0 can address the problem by storing the
entity while the latter block responds to the signal update.

Example 3.3. Example of Solution

 SimEvents Diagnostics Pane

3-9

Command-Line Information
Parameter: propDiagStatOutput
Type: double
Value: 0 | 1 | 2
Default: 1

Recommended Settings

Application Setting
Debugging warning or error
Efficiency none

Modification of attribute values used for decision making

Note These configuration parameters are obsolete. They are available only for SimEvents releases
prior to R2016a.

Select the diagnostic action to take if the application detects certain situations in which a block
modifies an attribute that a subsequent block uses to determine its availability. In some of these
cases, internal queries among blocks might result in a decision based on information that changes
when the entity actually advances.

Settings

Default: error

none
The application does not check for this situation.

warning
When the application detects this situation, it displays a warning.

error
When the application detects this situation, it terminates the simulation and displays an error
message.

Tip

A Single Server block whose Service time parameter is 0 can address the problem by storing the
entity while the latter block responds to the signal update.

3 Configuration Parameters

3-10

Example 3.4. Example of Solution

Command-Line Information
Parameter: propDiagChangeAttrib
Type: double
Value: 0 | 1 | 2
Default: 2

Recommended Settings

Application Setting
Debugging warning or error
Efficiency none

Identical seeds for random number generators

Note These configuration parameters are obsolete. They are available only for SimEvents releases
prior to R2016a.

Select the diagnostic action to take if the application detects that multiple random number
generators use the same seed value, which might cause correlations among random processes.

Settings

Default: warning

none
The application does not check for this situation.

warning
When the application detects this situation, it displays a warning.

error
When the application detects this situation, it terminates the simulation and displays an error
message.

 SimEvents Diagnostics Pane

3-11

Tips

• If you set the parameter to warning, the warning message contains hyperlinks labeled
“Randomize” and “Randomize All” that can help you address the problem.

• The se_randomizeseeds function provides a programmatic way to address the problem.
• Set the parameter to none if duplicate seeds are intentional in your model.

Command-Line Information
Parameter: propRNGIdenticalSeeds
Type: double
Value: 0 | 1 | 2
Default: 1

Recommended Settings

Application Setting
Debugging warning or error
Efficiency none

See Also

More About
• “SimEvents Pane” on page 3-2

3 Configuration Parameters

3-12

Upgrade Advisor Checks

4

SimEvents Upgrade Advisor Checks

Note These checks are obsolete. They are available only for SimEvents releases prior to R2016a.

In this section...
“Checks Overview” on page 4-2
“Check for implicit event duplication caused by SimEvents blocks” on page 4-2

Checks Overview

Note These checks are obsolete. They are available only for SimEvents releases prior to R2016a.

Use SimEvents Upgrade Advisor checks to identify backward-compatibility issues in your model.

Check for implicit event duplication caused by SimEvents blocks

Note These checks are obsolete. They are available only for SimEvents releases prior to R2016a.

Check configuration parameters of model for status of Prevent duplicate events on multiport
blocks and branched signals option.

Description

This Upgrade Advisor check verifies if you have selected the Prevent duplicate events on
multiport blocks and branched signals check box in the Configuration Parameters dialog box of
your model.

When you run a model created in a version of SimEvents prior to R2012a, the model might exhibit a
behavior called multifiring that leads to duplication of events in the simulation. This event duplication
behavior is implicit in models with certain configurations and results from the way the software
executes the blocks of such configurations. Implicit event duplication is resolved in R2012a with the
addition of the configuration parameter Prevent duplicate events on multiport blocks and
branched signals.

Available with SimEvents.

Results and Recommended Actions

Condition Recommended Action
SimEvents >Prevent duplicate events on
multiport blocks and branched signals check
box is not selected.

In the Configuration Parameters dialog box of
your model, select the SimEvents > Prevent
duplicate events on multiport blocks and
branched signals check box.

4 Upgrade Advisor Checks

4-2

An alternative to the recommended action in the preceding table is to use the Modify Settings
button in the Action section of the Upgrade Advisor results pane. If you click Modify Settings, the
software directly enables Prevent duplicate events on multiport blocks and branched signals.

Note The configuration parameter Prevent duplicate events on multiport blocks and branched
signals is not compatible with blocks from versions of SimEvents prior to 4.0 (R2011b). The Upgrade
Advisor provides the recommended action (if any) for the check, “Check for implicit event duplication
caused by SimEvents blocks” on page 4-2.

See Also

More About
• “Consult the Upgrade Advisor”

 SimEvents Upgrade Advisor Checks

4-3

	Functions
	matlab.DiscreteEventSystem
	matlab.DiscreteEventSystem.blocked
	matlab.DiscreteEventSystem.cancelAcquireResource
	matlab.DiscreteEventSystem.cancelDestroy
	matlab.DiscreteEventSystem.cancelForward
	matlab.DiscreteEventSystem.cancelGenerate
	matlab.DiscreteEventSystem.cancelIterate
	matlab.DiscreteEventSystem.cancelTimer
	matlab.DiscreteEventSystem.destroy
	matlab.DiscreteEventSystem.entityType
	matlab.DiscreteEventSystem.entry
	matlab.DiscreteEventSystem.eventAcquireResource
	matlab.DiscreteEventSystem.eventDestroy
	matlab.DiscreteEventSystem.eventForward
	matlab.DiscreteEventSystem.eventGenerate
	matlab.DiscreteEventSystem.eventIterate
	matlab.DiscreteEventSystem.eventReleaseAllResources
	matlab.DiscreteEventSystem.eventReleaseResource
	matlab.DiscreteEventSystem.eventTestEntry
	matlab.DiscreteEventSystem.eventTimer
	matlab.DiscreteEventSystem.exit
	matlab.DiscreteEventSystem.generate
	matlab.DiscreteEventSystem.getEntityPortsImpl
	matlab.DiscreteEventSystem.getEntityStorageImpl
	matlab.DiscreteEventSystem.getEntityTypesImpl
	matlab.DiscreteEventSystem.getResourceNamesImpl
	matlab.DiscreteEventSystem.initEventArray
	matlab.DiscreteEventSystem.initResourceArray
	matlab.DiscreteEventSystem.iterate
	matlab.DiscreteEventSystem.modified
	matlab.DiscreteEventSystem.queueFIFO
	matlab.DiscreteEventSystem.queueLIFO
	matlab.DiscreteEventSystem.queuePriority
	matlab.DiscreteEventSystem.queueSysPriority
	matlab.DiscreteEventSystem.resourceAcquired
	matlab.DiscreteEventSystem.resourceReleased
	matlab.DiscreteEventSystem.resourceSpecification
	matlab.DiscreteEventSystem.resourceType
	matlab.DiscreteEventSystem.setupEvents
	matlab.DiscreteEventSystem.testEntry
	matlab.DiscreteEventSystem.timer
	simevents
	simeventslib
	simevents.SimulationObserver
	simevents.SimulationObserver.addBlockNotification
	simevents.SimulationObserver.getAllBlockWithStorages
	simevents.SimulationObserver.getBlocksToNotify
	simevents.SimulationObserver.getEventCalendars
	simevents.SimulationObserver.getHandlesToBlockStorages
	simevents.SimulationObserver.getHandleToBlock
	simevents.SimulationObserver.notifyEventCalendarEvents
	simevents.SimulationObserver.postEntry
	simevents.SimulationObserver.preExecute
	simevents.SimulationObserver.preExit
	simevents.SimulationObserver.removeBlockNotification
	simevents.SimulationObserver.simPaused
	simevents.SimulationObserver.simResumed
	simevents.SimulationObserver.simStarted
	simevents.SimulationObserver.simTerminating

	Blocks
	Composite Entity Creator
	Composite Entity Splitter
	Conveyor System
	Discrete-Event Chart
	Entity Batch Creator
	Entity Batch Splitter
	Entity Find
	Entity Gate
	Entity Generator
	Entity Input Switch
	Entity Multicast
	Entity Output Switch
	Queue
	Entity Replicator
	Entity Selector
	Entity Server
	Entity Store
	Entity Terminator
	Hit Crossing
	MATLAB Discrete-Event System
	Receive
	Send
	Entity Transport Delay
	Multicast Receive Queue
	Resource Acquirer
	Resource Pool
	Resource Releaser
	Sequence Viewer
	SimEvents Debugger

	Configuration Parameters
	SimEvents Pane
	SimEvents Pane Overview
	Execution order
	Seed for event randomization
	Maximum events per block
	Maximum events per model
	Prevent duplicate events on multiport blocks and branched signals

	SimEvents Diagnostics Pane
	Diagnostics Pane Overview
	Attribute output delayed relative to entities
	Response to function call delayed relative to entities
	Statistical output delayed relative to entities
	Modification of attribute values used for decision making
	Identical seeds for random number generators

	Upgrade Advisor Checks
	SimEvents Upgrade Advisor Checks
	Checks Overview
	Check for implicit event duplication caused by SimEvents blocks

